

BERGISCHE

UNIVERSITÄT

WUPPERTAL

Distributed memory parallelization
of CubeLib library using MPI

submitted by
Aleksandar Mitić

A master thesis presented for the degree of
M.Sc. Computer Simulation in Science

Date: 11th March 2024
Supervisor: Prof. Dr. Francesco Knechtli
External Supervisor: Dr. Pavel Saviankou
Second Supervisor: Dr. Roman Höllwieser

Bergische Universität Wuppertal

in cooperation with
Forschungszentrum Jülich

1

Erklärung

gem. § 20 Abs. 9 PO (Allgemeine Bestimmungen)

Hiermit erkläre ich, dass ich die von mir eingereichte Abschlussarbeit (Master-Thesis) selbständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Stellen der

Abschlussarbeit, die anderen Werken dem Wortlaut oder Sinn nach entnommen wurden, in jedem Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Datum und Ort,

11.03.2024, Wuppertal

Aleksandar Mitic

2

Acknowledgements

I extend my heartfelt gratitude to Dr. Pavel Saviankou, my mentor, for his unwavering guidance and

support throughout the entire process of my master thesis. His expertise, encouragement, and valuable

insights have been instrumental in shaping this research, and without his dedicated mentorship, this work

would not have been possible.

I am also deeply thankful to Dr. Roman Höllwieser, my supervisor, for his consistent and constructive

feedback during the development of this thesis. His commitment to excellence and willingness to share

his expertise have been invaluable. Additionally, I extend my appreciation to Prof. Dr. Francesco Knechtli

for supervising my thesis.

Special thanks are due to FZ Juelich for their support, and I express my gratitude to Christian Feld for

his assistance in setting up the Score-P measurements.

3

Table of contents

1 Introduction 7

2 HPC environment 8

2.1 Evolution of supercomputers .. 8

2.2 Motivation for parallelization ... 9

2.3 Parallel systems and architectures ... 9

2.4 Performance analysis tools ... 10

2.4.1 Score-P profiling and tracing ... 11

2.5 Performance space ... 11

2.5.1 Metrics .. 12

2.5.2 Call paths ... 12

2.5.3 System locations ... 13

2.5.4 Severity values .. 15

3 MPI Point-to-Point communication 17

3.1 Blocking and nonblocking communication ... 17

3.2 Communication and computation overlap ... 18

4 Cube framework 19

4.1 Overview of Cube libraries .. 19

4.2 CubeLib library .. 20

4.2.1 Usage of the library ... 20

4.2.2 Structure of CubeLib library .. 21

4.2.3 Cube metrics ... 23

4.3 CubeLib tools ... 27

5 New MPI CubeLib library 29

5.1 Main idea .. 29

5.2 Asynchronous communication in CubeLib .. 29

5.3 Task distribution .. 30

5.3.1 Call tree parallelization and tree structure benchmarks .. 31

5.3.2 Enumeration methods .. 32

5.4 Integration .. 35

6 Results and discussion 37

6.1 Experimental setup and configuration ... 37

6.2 Score-P Instrumentation ... 38

6.3 Performance measurement of new library ... 39

6.3.1 Prototype timings.. 39

6.3.2 Heuristic rules for estimating MPI rank interval ... 51

6.3.3 Real life cubes ... 52

6.3.4 Memory recordings ... 54

4

7 Conclusion and future work 57

7.1 Conclusion ... 57

7.2 Future work ... 58

8 References 59

A Appendix - source code 62

A.1 Cube.cpp ... 62

A.2 CubeMetricBuildInType.h ... 67

A.3 CubeInclusiveMetricBuildInType.h ... 68

A.4 CubeExclusiveMetricBuildInType.h ... 70

A.5 regioninfo_calls.h .. 72

A.6 Enumeration_Methods.cpp .. 76

A.7 mpi_prototype.cpp ... 80

A.8 cube_bt.cpp .. 83

5

List of Figures

Figure 1: Types of parallel systems ... 10

Figure 2: Call tree .. 13

Figure 3: System tree .. 14

Figure 4: Cube definition of system tree ... 15

Figure 5: Representation of severity matrix .. 16

Figure 6: Cube libraries ... 19

Figure 7: CubeGUI ... 20

Figure 8: Shorten UML class diagram of CubeLib .. 22

Figure 9: Inclusive and Exclusive values .. 24

Figure 10: Current internal steps of the value calculation .. 25

Figure 11: Tree ordering .. 26

Figure 12:Proposed setup of Cube server on HPC .. 27

Figure 13: Suggested parallelization for internal steps of value calculation using C++ and MPI 30

Figure 14: Workflow of Task execution ... 31

Figure 15: Different Tree structures .. 32

Figure 16: Plain enumeration (BFS) of MPI Ranks ... 33

Figure 17: Round-Robin enumeration of MPI Ranks ... 34

Figure 18: Deepest chain enumeration of MPI ranks.. 34

Figure 19: Jülich Research on Exascale Cluster Architectures (JURECA) at Jülich Supercomputing

Centre.. 37

Figure 20: Task timing of enumeration methods on linear tree ... 40

Figure 21: Example of Plain and Round-Robin rank enumerations on linear tree 41

Figure 22: Task timing of enumeration methods on single-level tree .. 41

Figure 23: Task timing of enumeration methods on binary tree .. 42

Figure 24: Example of Plain and Deepest chain rank enumerations on binary tree 43

Figure 25: Example of Random shuffle rank enumeration method on binary tree 43

Figure 26: Task timing with Deepest chain and balanced tree ... 44

Figure 27: Example of Non-Balanced tree with Deepest chain enumeration method 45

Figure 28: Task timing with Deepest chain and binary tree for different number of cnodes 45

Figure 29: Task timing with Deepest chain and binary tree for different number of locations 46

Figure 30: Task timing with Random Shuffle and binary tree for different number of locations 47

Figure 31: Task timing with Deepest chain and small binary tree for different number of locations 48

Figure 32: Task timing with Random Shuffle and small binary tree for different number of locations

 .. 48

Figure 33: Task timing with Random Shuffle and small binary tree for different number of cnodes 49

Figure 34: Scaling plot of Deepest chain enumeration method ... 50

Figure 35: Real life big cubes ... 52

Figure 36: Real life small cubes ... 54

Figure 37: Memory footprint .. 55

Figure 38: Memory footprint of task execution from one process ... 56

6

List of Tables

Table 1: Call path order ... 26

Table 2: JURECA system information .. 37

Table 3: Speedups and Efficiencies ... 49

Table 4: Large cube file information ... 52

Table 5: Smaller cube file information .. 53

7

1 Introduction

In the contemporary landscape of scientific and computational research, the pursuit of

computational power has driven the adoption of supercomputers and parallel programming paradigms.

As researchers and engineers strive to solve increasingly complex problems, the need for efficient

utilization of high-performance computing (HPC) resources has become paramount. The development

and utilization of sophisticated performance analysis tools became a necessity to ensure optimal program

execution.

The existing Cube Framework, an integral component of the performance analysis toolkit, has been

pivotal in providing insights into application behavior. However, a workload such as performance

measurement analysis of large applications can be limited by the computation load. Large memory

footprint can put a limitation on the size of feasible performance measurement configuration.

This thesis undertakes the task of rewriting and enhancing the CubeLib library, which is part of Cube

Framework, with Message Passing Interface (MPI) capabilities. With a new parallel approach, workload

and memory footprint is distributed among the processes. This not only makes the computations faster

but also decreases the amount of memory each process needs. This change addresses and helps to avoid

the previous issues, making the library more efficient and effective.

The structure of this thesis reflects a comprehensive exploration of challenges and solutions

encountered as follows: In Chapter 2, we give introduction to HPC which explores the need for

supercomputers and the emergence of parallel programming as a fundamental paradigm in HPC. Also, it

discusses the significance of tools like Score-P or CubeLib in measuring an application's performance, and

how it forms a three-dimensional performance space. Chapter 3 presents the point-to-point

communication structure in the MPI environment including an essential approach of asynchronous

communication. Providing an in-depth examination of the Cube Framework, Chapter 4 outlines its role in

performance analysis and its relevance in the HPC domain. It identifies the limitations and opportunities

for enhancement within the Cube library, which is the main topic of this thesis. Chapter 5 describes the

design and implementation of a new MPI prototype to address the challenges identified in the existing

CubeLib library. Exploring the process of integrating the MPI prototype into the Cube library, it details the

improvements that are made. In Chapter 6, we present the outcomes of the new CubeLib library,

emphasizing the performance of new approach focusing on the artificial benchmark profiles and testing

the performance of the enhanced algorithm on the real cubes of different sizes. In Chapter 7, we

summarize the key findings and contributions of the thesis providing insights into the broader implications

of the parallelized Cube library and leaving the space for future research and development.

8

2 HPC environment

2.1 Evolution of supercomputers

High performance computing (HPC) is essential for tackling complex computational tasks across

diverse fields, from scientific research to engineering and healthcare. Their ability to handle massive

datasets and perform simulations accelerates innovation and drives breakthrough discoveries. By

providing the computational power needed for innovation, supercomputers play a crucial role in

advancing knowledge and driving economic growth.

Transitioning from the evolution of supercomputers, it's evident that these advancements paved a

long way. In 1977, the CRAY-1 was the sole computer that fulfils the computer capability requirement of

processing from 20 to 60 million floating point operations per second [1]. By employing a method known

as "chaining," the CRAY-1 was capable of enhancing the computational efficiency. This method involves

linking the CRAY-1's vector functional units with scalar and vector registers to produce intermediate

outputs [2]. These results are then reused immediately without additional memory references, thus

preventing slowdowns commonly observed in other contemporary computer systems.

Following the CRAY-1, one significant development on the evolution of the supercomputers was the

emergence of parallel processing architectures: The Connection Machine [3], introduced in the mid-

1980s, offered a new solution for fast symbolic processing tasks. The Connection Machine architecture

stands out as one of the most innovative among recent parallel systems. It's considered a "logic-in-

memory" design, where processors are not physically distinct from the main memory. Since this

architecture has a large number of floating-point processors, it becomes a very useful tool for performing

large-scale numerical computations effectively [4].

Another significant stride in HPC was seen with the advent of Beowulf clusters [5], which

revolutionized parallel computing. Beowulf clusters exploit together all three main components such as

commodity personal computers (can be called as workstations), cost friendly Ethernet networks and the

open source Linux operating system [6]. They often utilize parallel processing libraries such as MPI and

Parallel Virtual Machine (PVM) [7]. These libraries enable programmers to split tasks among a network of

computers and gather the processed results. Examples of MPI software include Open MPI or MPICH, with

other implementations also being available.

The CRAY T3D is a machine employing "Multiple Instruction Multiple Data" architecture, featuring a

rapid interconnect network facilitating the exchange of control information and data. While its memory

is physically distributed, it is logically shared [8, 9]. Meanwhile, The Computer Machine-5 (CM-5) is

introduced with a memory arrangement where each processor has its own local memory for quick access

[10]. Additionally, processors can access data stored in the remote memories of other processors through

the network.

When the early 2000s came, researchers recognized the potential of using programmable graphics

hardware (GPUs) for general-purpose computing tasks, offering significantly faster solutions to compute-

intensive problems compared to conventional CPUs [11]. GPU computing with CUDA - CUDA is a parallel

computing platform and programming model developed by NVIDIA [12] - presented a novel approach,

utilizing hundreds of on-chip processor cores that collaborate to address complex computing challenges,

effectively transforming GPUs into massively parallel processors.

Supercomputers are known for their extraordinary processing capabilities [13]. Supercomputers have

come a long way from their early models like the CRAY-1 to the advanced systems we have today. They're

9

incredibly powerful and can handle huge amounts of data, making them crucial tools in fields like science

and engineering. As technology progresses, supercomputers are expected to become even more

powerful, leading to exciting possibilities for solving complex problems and driving innovation in the

digital era.

However, the impact of supercomputers goes beyond just their computational power. These HPC

systems play an important role across different human activities, from weather forecasting and scientific

simulations to financial modeling and more on. Two key components are critical for the evolution of

supercomputers: the increasing complexity of problems and the demand for faster results. This has led to

the continuous development of these machines in both size and capability.

Given their consumption of power, time, and financial resources, optimizing the use of

supercomputers is needed. Making them as efficient as possible not only saves important resources but

also makes the computer tasks work better. This need for optimization sets the stage for the next chapter

of this thesis, which explores parallelization and optimization strategies.

2.2 Motivation for parallelization

In a traditional computer, a single processor executes the actions specified in a program. To increase

computational speed, multiple processors can be employed to tackle a single problem simultaneously.

This approach involves splitting the overall problem into separate parts, each executed by a distinct

processor in parallel [14]. Programming for this type of computation is called parallel programming, where

the goal is to efficiently distribute tasks across multiple processors to maximize computational efficiency.

While this approach offers potential for increased computational power, it requires rewriting serial

programs into parallel ones or developing translation programs to automatically convert them [15].

Parallelism has proven effective across a multitude of domains, spanning from HPC and server

environments to graphics accelerators and various embedded systems [16]. Its utilization extends to

diverse applications, including scientific simulations, data analysis, image processing, machine learning,

and real-time embedded systems. This versatility highlights parallelism's significance in improving

computational efficiency and meeting the demands of modern computing tasks across different domains.

2.3 Parallel systems and architectures

In parallel programming, memory architecture refers to the organization and access methods of

memory within a parallel computing setup. It encompasses different types like shared memory

architecture, where all processors access a single memory space, and distributed memory architecture,

where each processor has its own local memory. Each computer includes a processor and local memory,

but this memory isn't accessible by other processors [14]. The interconnection network facilitates

communication between processors according to the program's requirements. These types of

multiprocessor systems are often referred to as message passing multiprocessors. Open Multi-Processing

(OpenMP), is an Application Programming Interface (API) designed to use shared-memory

multiprocessing programming across platforms in C, C++, and Fortran languages [17]. OpenMP gives a

framework that offers developers an accessible and adaptable interface for parallel applications suitable

for a variety of setups, from standard desktop computers to supercomputers [18]. Achieving a standard

for message passing systems, which offers library routines and associated operations, is made possible

10

through the message passing interface (MPI). Applications developed utilizing a hybrid parallel

programming model can operate on computer clusters by integrating both OpenMP and the MPI. In this

model, OpenMP uses parallelism within a multi-core node, whereas MPI manages parallelism among

nodes. In this thesis, the focus is on the distributed memory parallelization approach. Distributed memory

in MPI refers to a computing architecture where each processor has its own private memory, and

processors communicate by sending and receiving messages through a network. Such configuration can

be seen in Figure 1.

The MPI enables the coding of parallel programs that exchange data through sending and receiving

messages between participating processes where the relevant data is being exchanged through these

messages [19]. MPI provides a comprehensive set of communication for parallel computing. This includes

point-to-point communication, in which messages are exchanged between specific pairs of processes, as

well as collective communication, where messages are broadcasted or gathered among groups of

processes. [15]. These functionalities are essential for coordinating computation and data exchange in

parallel programs, enabling efficient collaboration among distributed computing resources.

Figure 1: Types of parallel systems

On the left, the configuration represents a shared memory system, where each 'P' block signifies a single

processing unit. On the right, the arrangement depicts a distributed memory system, maintaining the same

notation for the processing unit and each 'M' block denotes a memory unit.

2.4 Performance analysis tools

In addition to the typical bugs encountered in software engineering, parallel applications introduce

a unique set of challenges, primarily due to the simultaneous execution of parallel algorithms, e.g.,

increasing parallelization leads to algorithmic and performance pitfalls, which are hard to impossible to

resolve in manual approach at small scale. Many appear only at large scale and we cannot detect them

without using specialized performance analysis tools. Tools that assist programmers with this purpose are

crucial for conducting HPC research. Each tool comes with its unique set of strengths and weaknesses.

HPCtoolkit is a collection of tools tailored for the analysis of high-performance computing

applications [20]. It assists in profiling, tracing and visualizing performance metrics to pinpoint and lighten

bottlenecks, thereby streamlining application performance. Accommodating parallel programming

frameworks like MPI and OpenMP, HPCtoolkit is a favored choice within the HPC sector for its robust

analysis capabilities.

Barcelona Supercomputing Center's Paraver tool specializes in the examination of parallel and

distributed systems [21]. It brings to the table functionalities for performance measurement, visualization,

and analysis. Its adaptability to a variety of parallel programming frameworks, such as MPI and OpenMP,

renders it a flexible solution for enhancing application performance.

11

The Score-P project contributes an instrumentation and measurement interface that it offers tracing,

profiling, and visualization capabilities that aid in the detection and optimization of performance

bottlenecks, supporting MPI, OpenMP, and hybrid programming models [22].

Developed at the Jülich Supercomputing Centre, Scalasca stands as a suite of tools designed for the

performance analysis of parallel and distributed applications [23]. It offers automatic trace analysis

supporting MPI, OpenMP, and hybrid programming models.

Vampir, a product of Technische Universität Dresden, is acclaimed in the HPC community for its

detailed analysis of parallel and distributed application behaviors [24]. It provides extensive features for

visualization of data tracing collected by Score-P, delivering in-depth understanding of execution flows,

communication patterns, and resource usage.

2.4.1 Score-P profiling and tracing

Score-P plays a vital role for performance tracing for parallel codes. By providing a unified

infrastructure for instrumentation and measurement, Score-P simplifies the process of collecting and

analyzing trace data, which is crucial for understanding the behavior of parallel applications [25]. Tracing

allows developers to visualize the execution flow, identify performance bottlenecks, and optimize code

behavior.

With Score-P, users can instrument their codes to capture detailed trace data, including function

calls, communication events, and synchronization points. This rich set of trace information enables deeper

insights into the runtime behavior of parallel applications, helping developers pinpoint inefficiencies and

optimize performance.

The redundancies in the current tools landscape pose challenges for both developers and users. By

integrating similar components and interfaces into a unified infrastructure, Score-P reduces redundant

effort for development, maintenance, and support across multiple groups. This streamlined approach not

only enhances interoperability but also frees up resources for enhancing analysis functionality in

individual tools. From a user perspective, Score-P addresses the discomfort caused by multiple learning

curves, incompatible configurations, and redundant installations, thereby improving usability and

reproducibility in performance analysis tasks. Score-P's role as a joint measurement infrastructure aligns

with the goal of overcoming the challenges posed by the fragmented tools landscape and promoting

efficient and effective performance analysis in parallel computing environments. In this thesis, Score-P is

used to obtain profiles from the performance measurement of the parallelized CubeLib library. In Chapter

4, more details about the CubeLib library are given.

2.5 Performance space

Each tool records its performance measurement outcomes in varied formats. Nonetheless, for

effective performance analysis and particularly for comparing results, a standardized and more broadly

applicable interpretation of this data is essential. Consequently, discussions about this data often refer to

it within a concept known as the "performance space," which allows for a unified understanding and

analysis of the performance metrics.

The performance space is characterized by three dimensions: performance metrics, call tree, and

system description [26]. Each of them answers the following questions, during the execution, respectively:

12

1-) What is kind of performance metric 2-) When is it measured during execution in the place of source

code? 3-) Where is it in the machine or system?

Metrics identify performance issues, call trees locates them in the application's execution, and

system description provides information about the component of the HPC system. Each coordinate in this

space is associated with a numeric value representing issue severity, enabling quantitative performance

assessment. In the following section, the dimensions of performance metrics, call tree, and system

description, along with their associated severity values, are discussed in detail.

2.5.1 Metrics

Metrics provide valuable insights into various aspects of the application's behavior during execution.

For example, one commonly tracked metric is Execution Time [27], which measures the time taken by the

application to complete its execution. This metric offers a high-level overview of the application's overall

performance and efficiency.

MPI Time [28] represents the duration spent within instrumented MPI function calls during program

execution. It offers insights into the overall time dedicated to MPI operations, including message passing

and synchronization. It's important to note that depending on the configuration, certain classes of MPI

calls may be excluded from measurement, impacting the analysis report's completeness.

On the other hand, MPI Communication Time measures the time allocated specifically to MPI

communication operations. This encompasses various types of communication, such as point-to-point,

collective, and one-sided communication. Understanding MPI Communication Time helps in assessing the

efficiency of data exchange and synchronization among MPI processes, providing valuable information for

performance optimization, and identifying potential bottlenecks in parallel applications.

Addition to the time metrics, another metric important for this thesis is the Visits metric. The Visits

metric counts how often a specific function is used in the application. Functions that are used a lot often

have a bigger effect on the app's performance.

Another important metric is Memory Usage, which includes measurements such as memory

footprint, allocation rates, and memory accesses. These metrics help evaluate how effectively the

application manages memory resources and can highlight potential memory-related issues. Within

performance analysis frameworks for parallel applications, numerous other metrics play a vital role in

assessing various aspects of program execution and evaluating the behavior and efficiency of parallel

applications, including those utilizing MPI. We will denote total number of metrics as 𝑁𝑚𝑒𝑡𝑟𝑖𝑐𝑠.

2.5.2 Call paths

The call path represents a specific sequence of function calls within a parallel application, tracing the

execution flow from the root function down to leaf functions [29]. It provides a detailed view of how

computational tasks are nested and interconnected, offering insights into the program's control flow and

execution behavior. The call path is crucial for understanding the fine-grained dynamics of code execution,

identifying performance bottlenecks, and diagnosing issues related to function call patterns, recursion, or

nested loops. By analyzing the call path, developers can identify critical paths within the application,

optimize algorithmic efficiency, and address performance anomalies at a granular level. Moreover, the

call path contributes to the performance space by associating performance metrics with specific call paths,

enabling developers to evaluate the impact of function calls on overall application performance. Also, the

13

call path serves as a fundamental concept in Cube's performance analysis toolkit, facilitating

comprehensive assessment and optimization of parallel applications.

Figure 2: Call tree

We observe an illustration demonstrating how the code's organization forms a call tree. On the left, there's a

pseudocode of a basic program, while on the right, there's its corresponding call tree. Every node in the call tree

symbolizes a single call path. For instance, the main() node has three branches, foo() has one, while

MPI_Init(), bar() and MPI_Finalize() are leaves.

Therefore, the extent of the second dimension is linked to the code's size and its complexity.

Functions that are highly recursive can influence the depth of the call tree. Let's designate the total

count of call paths as 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 and a corresponding object call tree node from Cube codebase as cnode.

2.5.3 System locations

In parallel computing, especially when working with MPI applications, understanding the complex

interactions between processes requires looking at performance from multiple angles. One key aspect is

the system location, which tells us where the code is actually running, whether on a specific thread or

process on some specific part of the HPC system also known as rank 0 or nodeplane 2, etc. This detail is

crucial for identifying and fixing performance issues because different parts of the application may run on

different processors.

The system location serves as a map to the execution environment. For applications that use the MPI

interface alone, the system locations match with MPI processes. If an application relies solely on the

OpenMP interface, then the system locations are the OpenMP threads [30]. However, many modern

applications use a hybrid approach, combining MPI and OpenMP. In such cases, each MPI process might

start several OpenMP threads, and the number of threads can vary across MPI processes. This setup

introduces a more layered understanding of system locations, as it now includes threads initiated by

different MPI processes.

Recognizing the specific system locations in hybrid applications is essential for a detailed

performance analysis. It enables us to zoom in on how different parts of the application interact with the

computing environment. This precise approach helps in identifying exactly where performance may lag

and how to optimize it. By tailoring our strategies to the unique setup of each system location—

considering the mix of MPI processes and OpenMP threads—we can enhance the application’s

performance more effectively. This method not only helps in pinpointing the root causes of performance

bottlenecks but also ensures that solutions are well-suited to the application’s specific parallel structure,

14

leading to improved efficiency and scalability. The total number of locations corresponds to the aggregate

of all threads:

𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =∑𝑁𝑡𝑖

𝑁𝑝

𝑖=1

Where 𝑁𝑝 represents the number of MPI processes, and 𝑁𝑡𝑖 denotes the number of OpenMP threads

initiated by the i-th process. In cases where the application does not utilize OpenMP, the formula should

be considered as:

𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑁𝑝

In Figure 3, a machine composed of one compute node as an example of simple setup is presented.

The application operates with two MPI processes, where each of these MPI processes spawns two

OpenMP threads. This structure results in a total of four distinct locations for computation: two MPI

processes each associated with two OpenMP threads. This configuration is a common structure in hybrid

parallel applications that uses both distributed memory parallelism (via MPI) and shared memory

parallelism (via OpenMP) to optimize performance and resource utilization.

Figure 3: System tree

We have an instance of a system tree, of a setup with one compute node within the machine. The application is

executed using 2 MPI processes, and each process generating 2 OpenMP threads. In total, there are 4 locations

identified within this configuration.

In the Cube framework, the system dimension is not bounded by depth as in the standard description

of performance space with no limitations to the specified four levels. Rather, it permits an unrestricted

depth in system description. Unlike the rigid machine and node components, Cube introduces a versatile

system tree node, capable of representing anything from the entire machine to a socket [26]. Each system

tree node has the ability to define location groups, typically denoting processes, as well as being the

branch of itself. These location groups further define individual locations, often synonymous with

execution threads. Each value within the Cube data model is associated with a distinct location. From here

we will denote total number of locations as 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, total number of system tree nodes as 𝑁𝑠𝑡𝑛, and

total number of location groups as 𝑁𝑙𝑔. We can observe such a description in example in Figure 4.

15

Figure 4: Cube definition of system tree

2.5.4 Severity values

Severity in Cube performance space is the next key concept, representing the actual measurement

for a specific metric at a particular point in this multidimensional space. Each dimension of the Cube

performance space is structured hierarchically. The metric dimension is organized in an inclusion

hierarchy [31], meaning metrics lower in the hierarchy are part of their parent metrics. For instance,

'communication time' is a subset of 'execution time' (see Chapter: Metrics). The system dimension is laid

out in a multi-level hierarchy, ranging from the machine level down to individual threads.

Cube also encompasses a library, such as CubeLib library, that reads and writes of this data model

into .cubex or Cube4 files, which is divided into metadata describing structure of the dimensions and the

data containing severity numbers. The severity value, thus, is not merely a number; it is a vital link that

connects the performance of a particular metric with its occurrence in the program’s workflow and its

execution context within the system. This connection is essential for pinpointing performance issues and

optimizing the application, as it provides a clear and quantifiable way to understand and navigate the

complexity of parallel computing performance within Cube's 3D performance space. Within this

framework, any point within the performance space, denoted as (m, c, s), is associated with a specific

metric (m) while a particular process or thread (s) executes a given call path (c). This association is

quantified by a value that represents the actual measurement of the metric m, known as the severity of

the performance space.

16

Figure 5: Representation of severity matrix
Figure above shows a cube structure and its three dimensions in hierarchical order: 1-Metrics or performance

property, 2-Call path or program location, 3-System location [32].

17

3 MPI Point-to-Point communication

When choosing to parallelize an algorithm using the distributed memory paradigm, communication

between different components of an HPC system becomes an inevitable necessity, with exception for only

a few trivial instances of parallelization. At the heart of this system is point-to-point communication, a key

operation that requires precise coordination of send and receive operations at runtime. Communication

in MPI is crucial for data exchange between processes, involving distinct roles for sending and receiving

data [33]. Although this dynamic coordination is fundamental for parallel programming [34] and offers

significant benefits, it can sometimes impact performance due to the necessity of matching operations

accurately to prevent issues such as deadlock.

Point-to-point communication in MPI not only allows for the seamless exchange of messages

between two different processes [35] but also ensures the integrity and error-free transmission of every

message. This method equates sending and receiving with the operations of storing and loading,

considering factors like the rank of the involved processes, message tags, and communicators.

Additionally, it plays a role in local synchronization by safeguarding against the premature overwriting of

the receive buffer, thereby ensuring that data remains valid upon the completion of the receive operation.

However, any mismatch from communication can result in a deadlock, where both sending and

receiving processes are idle, awaiting actions from each other that cannot be completed due to the

operational misalignment. This scenario requires management of MPI operations to prevent

communication disruptions and maintain smooth execution across processes.

3.1 Blocking and nonblocking communication

Building on the basic principles of MPI point-to-point communication, this section explores the

distinctions between blocking and non-blocking communication modes. These modes are very important

in shaping the efficiency and dynamics of data exchanges between processes in parallel applications. By

examining the features and uses of MPI_Send() and MPI_Recv() as blocking operations, as well as

the asynchronous alternatives MPI_Isend() and MPI_Irecv(), we look into the communication

patterns for better performance and adaptability in parallel computing settings.

MPI_Send() is a blocking (also called synchronous) send operation [36]. It sends a message from

one process to another and only returns once the message data has been copied out of the send buffer.

The receiver must post a corresponding receive operation for the send to complete successfully. During

the execution of MPI_Send(), the sending process is blocked from proceeding until the message

transfer is acknowledged, ensuring that the send buffer can be safely reused or modified after the call

returns. On the other hand, MPI_Recv() is the blocking receive operation counterpart to

MPI_Send(). It waits for a message to arrive from a specified sender, matching a specific tag and

communicator. MPI_Recv() blocks the receiving process until the expected message has arrived and

has been copied into the receive buffer, ensuring that the data is fully received and available for the

process to use.

To manage the communication pattern in parallel application, non-blocking operations (also called

asynchronous) such as MPI_Isend() and MPI_Irecv() play important roles. MPI_Isend() initiates the

sending of a message but returns immediately, allowing the sending process to perform other operations

while the message transfer is still in progress. The completion of the send operation can be verified later

18

using test or wait functions like MPI_Test() or MPI_Wait(). This approach is useful for overlapping

communication with computation or for managing communication in a more flexible manner. Similar to

MPI_Isend(), MPI_Irecv() is a non-blocking receive operation. It begins the reception of a

message but does not wait for the message to be fully received before returning control to the calling

process. This allows the receiving process to continue executing other code while the message is being

delivered.

3.2 Communication and computation overlap

In HPC systems, communication delays significantly impact overall performance. To mitigate this,

programmers increasingly rely on asynchronous communication methods, enabling simultaneous

communication and computation [37]. This strategy is crucial for improving performance, especially as

HPC applications evolve towards exascale computing. However, it introduces complexity into the code,

necessitating more development effort and resulting in programs that are less intuitive to understand.

Addressing the scalability challenges of future exascale machines, the MPI standard provides

essential support through non-blocking routines as described in chapter above [38]. This approach

underscores the balance between achieving operational efficiency and managing code complexity in the

development of scalable HPC applications.

For our prototype, we will use such a strategy and try to achieve communication and computation

overlap, as the way of parallelization will be explained in the following chapters.

19

4 Cube framework

Cube framework provides libraries for writing and reading measurement profiles and it includes a set

of tools to manipulate profiles, to export and visualize data via graphical user interface for the manual

performance analyses. The performance reports come in Cube4 file format, which also are produced by

Score-P or Scalasca profiling and tracing methods. It is continuously being developed by

Forschungszentrum Jülich team [23].

4.1 Overview of Cube libraries

Cube consists of a set of libraries and tools which can explore and save performance data. The most

recent version of Cube is 4.82, and it is utilized by Score-P for storing performance measurement data in

the Cube4 file format. CubeLib reproduces or replicates data models across every metric, while CubeW is

used to write performance profiles. Additionally, Cube features a graphical user interface called CubeGUI

for visually presenting the measured performance data, along with a Java reader library known as jCubeR.

Figure 6: Cube libraries

The figure above shows a relation between Cube libraries. In the spectrum of this thesis is the CubeLib library,

which can read and write data in the Cube4 file format [30].

The data is loaded into the cache memory through the utilization of CubeLib, subsequently presented

in a structured format with all dimensions arranged within three columns and initial root nodes collapsed.

In CubeGUI, users have the flexibility to collapse or expand non-leaf nodes within the metrics, call tree, or

system tree, allowing for adjustable levels of detail and granularity. This feature simplifies the process of

pinpointing problem sources. Moreover, severity values are visually represented by colored squares, with

the specific color indicating the value, which makes easy detection of noteworthy nodes. CubeGUI also

offers a flat call tree option, presenting call paths as a sequential list, which is particularly useful for

analyzing the severities of specific methods. The software is designed to be customizable through a variety

of predefined plugins. The interface of CubeGUI is presented in Figure 7, showcasing a three-panel display

that mirrors the three dimensions.

20

Figure 7: CubeGUI

The image above displays a snapshot of CubeGUI, where the left panel exhibits metrics, the middle panel
showcases a call tree, and the right panel features a system tree. Each node in the trees has the option to collapse
or expand. In this instance, the nodes for the call tree (cnodes) main and THREADS are expended under the ‘p1’

as well as all nodes under the machine in system tree. All metrics are leaf’s and they cannot be expanded.

However, the loading of extensive Cube4 files into CubeGUI [39] introduces delays and occasionally

proves unattainable, causing memory overhead, performance degradation, potential data loss, scalability

issues, etc. This consequently, results in slow user experience. The CubeLib library is used by CubeGUI to

read or write files, and handling such issues requires the library to be restructured. First, we take a look

into its architecture and methods.

4.2 CubeLib library

The CubeLib library, which is the main focus of this thesis, is a general purpose library made in C++

that finds application in reading and writing Cube4 file formats and allows customization of measured

profiles.

4.2.1 Usage of the library

An overview of the user’s interaction with the CubeLib library is presented. Before actual calculation

of severity values takes place, the CubeLib library needs to be initialized. This includes the creation of the

main Cube struct which is created with a call to: Cube cube. After that, the user must provide

definitions of all metrics, regions, call paths, locations, etc. The CubeLib library provides all necessary

methods for their creation: cube.cube_def_metric(…), cube.cube_def_region(…),

cube.cube_def_cnode(…), etc. Next step for the user is to provide severity values for each metric

by calling the method cube.set_sev(Metric* met, Cnode* cnode, Location* loc,
double value).

Arguments met, cnode, loc are pointers to the structures we previously defined. Number value

is a type of double severity value for a particular cnode of a metric. This is a way to write values in the

21

Cube4 file format. Another way of getting the data is calling cube.openCubeReport(string

_cubename) where _cubename stands for input file of Cube4 type. In order to perform computations

in such set up configuration, user should make a call to:
cube.get_sev(Metric* metric, CalculationFlavour mf, Cnode* cnode,

CalculationFlavour cnf, Sysres* sysres, CalculationFlavour sf)

Arguments metric, cnode, sysres are pointer positions which are in the Cube4 file for

dimensions respectively. CalculationFlavour is the type of enum and calculation flavors mf, cnf

and sf relate to the type of severity we want to calculate.

CalculationFlavour {

 CUBE_CALCULATE_INCLUSIVE = 0, ///< Value includes children

 CUBE_CALCULATE_EXCLUSIVE = 1, ///< Value excludes children

 CUBE_CALCULATE_SAME = 2, ///< Value depends on type

 CUBE_CALCULATE_NONE = 3, ///< Used to identify "empty" call

as a default value

};

Output value from the call cube.get_sev(…) can be seen in the user’s terminal if it is part of

some command line tool such as cube_dump or in the CubeGUI, depending on the usage of the library.

A key feature for this master thesis is that it replicates the performance space and provides calculation

routines to perform different aggregations across the data in order to obtain desired value.

4.2.2 Structure of CubeLib library

In this section of the master's thesis, we introduce the core components of the CubeLib, which being

implemented in C++, uses the capabilities of object-oriented programming, offering a rich framework that

utilizes classes and inheritance. Being a reader and writer of performance measurement files, CubeLib

consists of classes and methods relevant to such measurements. Cube as a main class has access to all

the dimension classes such as :

Metric instances of the class provide a means to quantify and evaluate the performance

characteristics of the software or system.

Region objects allow users to group performance data based on different code segments, enabling

fine-grained analysis and optimization.

Cnode or call node represents a specific call path or execution context within the application. Its

objects are typically used to represent call stacks or execution paths through the application's code.

SystemTreeNode, LocationGroup and Location, as explained in Chapter 2.5.3, objects

are nested within one another and structuring the representation of system hierarchy. Here a brief

information is given as following:

SystemTreeNode: Cube v4 introduces a generic system tree node in place of fixed machine and

node elements, representing any level from the entire machine down to a socket. It can have a child such

as another System Node Tree or Location Group and such example is given in Figure 4.

LocationGroup: Each system tree node can specify location groups which typically signify

processes. Its parent is always a SystemTreeNode and children is Location.

Location: Every location group establishes locations, which are often equivalent to execution

threads. Actual coordinates of data are Id's of locations.

22

It is essential to highlight that this library encompasses a multitude of functionalities beyond the

scope of this thesis. A simplified visual representation of its structure and components that are relevant

to us, as basic UML class diagrams are presented in Figure 8.

Figure 8: Shorten UML class diagram of CubeLib

The figure shows a shortened UML class diagram of the CubeLib library with the most important attributes and

methods for the focus of this thesis.

23

When the struct cube is being initialized via Cube cube and process opens a Cube4 file via function

call cube.openCubeReport(…), it loads all the necessary dimension information into memory such

as, metric tree, call tree and system tree at once, but data can be loaded at once, or portion by portion. If

done by portion, the process can later load data only on demand. The CubeLib library offers a variety of

functions, such as cube.get_sev(…), which enable different types of aggregations to be performed

on the loaded information.

When the cube.get_sev(…) is being called depending on the input parameters, the severity type

of value is being returned as an output. This method goes inside the cube library and checks based on the

given input parameters what type of a metric, which cnode and which system node is being asked for. For

example, if the input was cube.get_sev(0,0,0,0,-1,-1), this would relate to calculating the first

metric with type of Inclusive in the metric tree, the first cnode with a type of Inclusive in the call tree and

the entire system tree values. If the metric was already Exclusive type, it would sum up all the values of

the children of the desired node and return a double value. We will look at this kind of measurement

because it is the most data and computation intensive part of calculation, as it requires calculation of the

root cnode and all its children.

The current CubeLib library computes the severity values entirely sequentially with no parallelization.

In the next chapter of the thesis, we will see how we can improve its usage, but we have to omit the

advanced calculations of this method and only focus when the input is for the build-in-type Exclusive

metric for its Inclusive value.

4.2.3 Cube metrics

In Cube, the metric format refers to the structure or syntax used to define and represent performance

metrics within the Cube performance analysis tool. This format includes specifications for metric names,

data types, aggregation methods, and any additional properties or expressions used to compute and

analyze performance data. On the other side, the metric type refers to the classification or category of a

performance metric based on its behavior and characteristics. This classification determines how the

metric is aggregated, visualized, and analyzed within the Cube performance analysis tool.

Derived metrics in Cube differ from regular metrics in that they don't store data directly within the

cube report. Instead, they calculate their value based on an expression formulated using CubePL [40].

Here the type of the metrics is given:

• Inclusive metrics: These metrics accumulate values from the start of a call path to its end, including

the time spent in all called functions. They provide a holistic view of resource usage or time spent

within a given context in the call tree.

• Exclusive metrics: Exclusive metrics, in contrast to Inclusive ones, measure only the time or

resources used directly in a function, excluding any calls to other functions. This allows for

pinpointing specific areas of code for optimization.

• Derived metrics: Derived metrics indeed do not store data directly but calculate their values based

on expressions using CubePL. This makes them highly flexible and powerful for custom analyses.

• Post-derived metric: Evaluated after all other metric aggregations, this metric type allows for

complex analyses that can adapt based on the structure of either the system tree or the call tree.

The flexibility in its calculation, depending on whether it references other metrics or stands alone,

underscores Cube's adaptability in performance analysis.

24

We already explained the Inclusive and the Exclusive type of metrics. Therefore, for the performance

measurement, we focus on including all of the cnodes and the system tree values when giving an input to

the cube.get_sev(…) function.

Figure 9 illustrates the execution times of functions within an MPI program, displaying both Inclusive

and Exclusive time measurements. In the Inclusive time view, main() encompasses the total time,

including the initialization and finalization of MPI with MPI_Init(…) and MPI_Finalize(), as well

as the execution times of foo() and its nested function bar(). The total Inclusive time for main() is the

sum of all the times of the functions it calls, plus the time spent in main() itself.

In the Exclusive time view, main() only accounts for the time spent in the main() function itself,

excluding the time spent in functions it calls, like foo(). The Exclusive time is calculated by subtracting

the time spent in foo(), and any other called functions or MPI operations from the total time main()

is active.

Figure 9: Inclusive and Exclusive values

In a performance measurement system, time is typically captured as the duration between the entry

and exit points of a function, inherently resulting in an Inclusive measurement. This Inclusive time metric

encompasses the total time spent within the function as well as the time spent in all the functions it calls.

For instance, the Time metric in Cube is inherently Inclusive because it accounts for the entire duration a

function is active, including the execution times of its child functions.

On the other hand, an Exclusive metric, such as the Visits metric, counts the occurrences of function

calls without regard to the calls made to other functions by these functions. This metric is exclusively

concerned with the frequency of a particular function's invocation and remains unaffected by the

children's values.

In performance analysis tools like CubeGUI, the way call path severity values are recorded in a file is

influenced by whether the metric is Inclusive or Exclusive [41]. This distinction also informs the user

interface behavior: when a call node is expanded in CubeGUI's tree view, it shows Exclusive values,

whereas a collapsed node indicates Inclusive values. The underlying library, therefore, must be capable of

converting between Exclusive and Inclusive values to accommodate user interactions and provide a

complete picture of the application's performance. By the given following formulas bellow [30], we can

calculate the values.

25

𝑡𝑒𝑥𝑐𝑙 = 𝑡𝑖𝑛𝑐𝑙 − ∑ 𝑡𝑖𝑛𝑐𝑙
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

 (4.1)

and

𝑡𝑖𝑛𝑐𝑙 = 𝑡𝑒𝑥𝑐𝑙 + ∑ 𝑡𝑖𝑛𝑐𝑙
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

 (4.2)

Formula (4.2) can be extended:

𝑡𝑖𝑛𝑙𝑐 = 𝑡𝑒𝑥𝑐𝑙
𝑜𝑤𝑛 + ∑ 𝑡𝑒𝑥𝑐𝑙

𝑑𝑖𝑟𝑒𝑐𝑡
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

+ ∑ 𝑡𝑖𝑛𝑐𝑙
𝑔𝑟𝑎𝑛𝑑
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

(4.3)

The distinction between the formulas for converting Inclusive to Exclusive times, and vice versa, is

significant. To obtain an Exclusive time from an Inclusive time, we only require the Inclusive times of a

node's immediate children. In contrast, to transform Exclusive value into Inclusive, it's essential to first

determine the Inclusive value for all children of the node, with a recursive calculation that extends through

the entire subtree. The sequence diagram in Figure 10 presents the flow of a function called

get_sev_aggregated(…), which checks if a metric is Exclusive or cached and if not, recursively

aggregates values from child nodes before returning the final result. This is where the modifications will

be implemented within the CubeLib codebase.

Figure 10: Current internal steps of the value calculation

26

This recursive nature of computing Inclusive times aligns with principles of data access efficiency in

computing, notably influenced by data locality. Data locality refers to the speed advantage gained when

data is stored contiguously, allowing for faster access due to fewer data transfers between storage and

memory. This concept is leveraged when Inclusive values are used, optimizing data storage by placing

child nodes' data adjacent to each other. Such an arrangement follows a Breadth-first-search [42] pattern

in tree traversal, where a node is followed sequentially by its children, then by its grandchildren, and so

on.

In the case of Exclusive values, the preferred order is based on a Depth-first-search [43], where the

traversal dives recursively into each child node, proceeding to the leaf nodes before backtracking. This

method of ordering ensures that nodes are processed and stored in a way that reflects their hierarchical

relationship in the call tree (Figure 11).

Figure 11: Tree ordering

The figure shows Inclusive and Exclusive order for a simple call tree.

Order in the file Inclusive Exclusive

1 main() main()

2 MPI_Init() MPI_Init()

3 foo() foo()

4 MPI_Finalize() bar()

5 bar() MPI_Finalize()

Table 1: Call path order

In the enumeration process, whether a Round-Robin system or other approach is applied, we repeat

the same detailed step-by-step examination of tree structure as we go through the cnode list. When we

focus on an Exclusive metric, which is the focus of this thesis, the vector is examined using a Depth-first-

search method. This means we explore each branch before moving to the next. As a result, the Round-

Robin, the Deepest chain or similar become almost identical in practice. What sets them apart is how they

each trace the pathway through the nodes in the call tree. Calculating the Inclusive value for the root

node, especially when dealing with an Exclusive metric, is the most computationally demanding aspect of

our algorithm. These details about the algorithms are explained in the following chapter.

27

4.3 CubeLib tools

CubeLib is equipped with different command-line tools for data export, manipulation, and analysis.

Among the most important tools are cube_diff and cube_merge, which enable users to perform

algebraic operations on Cube4 files to generate new, aggregated results. Similarly, tools like cube_dump

and cube_calltree are useful for presenting data in different formats. Another important tool in this

suite is the cube_server, designed specifically to apply the remote analysis of performance data.

cube_server tool benefits significantly from the optimizations presented in this thesis.

During performance measurement, the obtained files result in a very large call tree and this leads to

huge Cube files. Therefore, the user needs to filter the Cube files, and repeat that process until a desired

profile is achieved. In the initial stages of performance measurement, the data is raw and unrefined,

leading to the creation of these large Cube files. Due to their size and the difficulty of transferring such

data to a local machine for analysis, it is more efficient to initiate the Cube server on the HPC system itself.

By taking advantage of the client-server features of CubeGUI with the Cube server, the user can directly

access and analyze the results on the HPC system. This approach not only avoids the process of

transferring large files but also utilizes the HPC system to enable the Cube server's operations.

The current cube_server does not utilize the task distribution, therefore if we were to connect to

the Cube server, we would only connect to the log-in node and then the configuration would only depend

on the log-in node itself. Also, if the user could score large Cube4 files, instead of copying them to the

local machine, he could keep them in the HPC cluster and filtering those files would be easier. In this case,

we offer clients another setup. It goes with two parts as client and server. The server is part of the CubeLib

library, and the client is a typical GUI.

Figure 12:Proposed setup of Cube server on HPC

We do not focus on the details of the server in this thesis, but we will simulate client-server behavior

during our library performance measurement and leave space for future work to integrate with the

proposed prototype. Proposed setup can be seen in Figure 12, where the blue color frame represents

current setup and the red color frame on how future setup can be established for CubeGUI to

communicate directly with cube_server. This approach is important for minimizing the impact on

28

system performance by applying filters, selective recording, and small-scale measurements from the

outset.

In this study, our focus is on examining the calculation algorithm itself. However, the execution of

the cube_server on compute nodes introduces an additional complexity, as it requires the capability

to connect to the cube_server while it operates on these nodes. This aspect represents an important

challenge, and it falls outside the scope of our current analysis. Therefore, rather than directly tackling

this connection issue, we choose a simulation approach. We simulate a mock task that performs the

behavior of a request coming from the CubeGUI client to evaluate the calculation performance. This mock

task allows us to measure the performance characteristics of the cube_server precisely in a controlled

environment without the need for an actual connection to the server running on compute nodes. This

method allows us to concentrate on studying the main algorithm while preparing for future research on

how the server works with compute nodes. The main contribution of this thesis is that the described

improvement allows the cube server to operate across multiple compute nodes, enhancing reaction times

and minimizing the memory footprint.

29

5 New MPI CubeLib library

From previous chapters we have seen how the calculation methods work in the current library and

its tools. If one requests Inclusive value, the library gathers one list of children and recursively calculates

their Inclusive values and then it sums them up. We introduce a new parallelized approach for library

methods and how cube_server could adapt to it.

5.1 Main idea

In the new version, the user will start the cube_server on compute nodes, on N ranks, where

every rank opens the same cube file, enumerate the call tree identically and wait for requests. Requests

are coming from the mock-task on rank 0, while the processing of the request, rank X loads data and

calculates values only from the own cnodes and sends other subsequent requests to remote ranks for the

value of not own cnodes. All initialization routines remain the same, hence the memory footprint for the

initialization and opening workload is the same for all ranks. But as every rank calculates values from only

its own cnodes as shown in formula (4.2), it loads only data from the call paths marked as its own, which

shows the reason for improving the memory footprint. Here own cnodes stands if a process´s enumeration

number matches its MPI rank and not own cnodes indicates the case if process's enumeration does not

match its MPI rank.

In the new calculation method, we create two lists of cnodes: 1-) local-marked rank is equal to own

rank, 2-) remote-marked rank is not the same as own rank. The working rank spawns tasks for every

remote cnode and while they are being processed, it calculates values from the local list. Once the local

calculation is done the library waits for the results from the remote task. This approach proposes

overlapping of communication and computation in the general sense as mentioned in chapter 3.2, which

is the reason for the computation performance improvement.

5.2 Asynchronous communication in CubeLib

As we split children list into two lists of remote and local values based on their association with the

current MPI rank , formula (4.2) is now transformed into:

𝑡𝑖𝑛𝑐𝑙 = 𝑡𝑒𝑥𝑐𝑙
𝑜𝑤𝑛 + ∑ 𝑡𝑖𝑛𝑐𝑙

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

= 𝑡𝑒𝑥𝑐𝑙
𝑜𝑤𝑛 + ∑ 𝑡𝑖𝑛𝑐𝑙

𝑙𝑜𝑐𝑎𝑙
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

+ ∑ 𝑡𝑖𝑛𝑐𝑙
𝑐𝑎𝑙𝑐𝑢𝑙𝑡𝑒𝑑 𝑟𝑒𝑚𝑜𝑡𝑒

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

(5.1)

Each value from the remote children is now calculated asynchronously while simultaneously

calculating values for local children cnodes. One waits for the asynchronous remote computations to

finish, and it combines the results from local and remote contributions to calculate the total severity

value. The resulting value is then sent back to the requesting process. The corresponding sequence

diagram is presented in Figure 13.

30

Figure 13: Suggested parallelization for internal steps of value calculation using C++ and MPI

5.3 Task distribution

The organization of user requests within a parallel processing system requires a sophisticated

approach to task management. When the request comes from the user, process 0 will be handling input

and output to the user as well as the mock task distribution. We use a combination of MPI and <future>

library to achieve asynchronous task execution. A simple example of a flow diagram of task execution

within a parallel processing system is explained in Figure 14. It shows different stages of task management

and execution, indicating the order and manner in which tasks are distributed and processed.

31

Figure 14: Workflow of Task execution

Figure shows the workflow diagram where squares labeled as a1, a2, a3 represent threads and function calls that

are being executed at the moment of Task spawning on 4 MPI Ranks. Process 0 is responsible for sending mock

tasks and receiving the results.

The diagram describes a multi-stage process in a parallel computing environment, where tasks are

managed and executed concurrently. Initially, tasks are generated by the sendMockTask(…) function,

indicating the simulation of task creation for the purpose of the workflow demonstration as described in

chapter 4.3. These tasks are then passed to a taskManager(…), a thread which runs asynchronously,

responsible for receiving and initializing the task execution . Thread is in a constant while loop, waiting

for a killing signal to be sent by process 0, where it will break its execution. Every process continues to

listen for incoming messages using MPI_Iprobe(…). Then, processTask(…) is being invoked with

std::async function and launch policy is set to std::launch::async which signifies the actual

execution of the tasks by the receiving process. When task computation is finished, the result is sent back

to process 0, which uses receiveResults(…) method. The workflow is indicative of a typical

parallel processing pattern where the task generation, management, and execution phases are distinct

yet function in an integrated asynchronous communication.

5.3.1 Call tree parallelization and tree structure benchmarks

In selecting the optimal dimension for parallelization among the three available options, namely

metric, call tree, and system tree, parallelization along the call tree dimension emerges as the most

suitable choice. The reason for this can be broken down into cases of why not to choose the other two in

the current configuration:

1. Metrics tree parallelization - Cube4 file contains only 11 metrics, in remapped version more than

100, so we would only utilize up to 100 MPI ranks. Additionally, the size of the Cube4 file

originates from the call or system tree. In CubeGUI the majority of operations happen to one

selected metric, and other metrics are idle, hence parallelization along the metric tree would

32

result in consistently selecting different ranks for what would otherwise be serial computations.

This results in data parallelization but not parallel computation.

2. System tree parallelization - it is too homogeneous, resulting in no computations being

performed within the system tree pane since the entire tree is displayed. Furthermore, for the

computation of values in the call tree, it would be communication between almost all

participating ranks, as the call tree pane displays aggregated values over the entire system tree.

Therefore, it seems natural to implement parallelization along the call tree, leaving on the back of the

head, that other options are possible but not necessarily better.

The maximum number of ranks that can be used for parallelization is less than or equal to the total

number of cnodes (𝑁𝑐𝑛𝑜𝑑𝑒𝑠), as one process can hold a minimum of one cnode. Our data set, performance

profile in form of a Cube4 file, structured as a tree, requires us to distribute the workload among the ranks

(processes) effectively. These trees, as shown in Figure 15, can exhibit either balanced or non-balanced

structures, thereby influencing the approach to parallelization. We examine three degenerated cases: 1-)

linear tree, 2-) single-level tree 3-) binary tree. These cubes will serve as artificial benchmarks, allowing us

to pin-point the influence of the tree structure on the performance.

A) B) C)

Figure 15: Different Tree structures

A) Linear tree, B) Single level tree and C) Binary tree structure types of Call Paths (cnodes) respectively shown in

figure above.

The distribution methods ensures that each MPI rank gets almost equal number of nodes for the call

tree, meaning that if 𝑁𝑟𝑎𝑛𝑘𝑠 ≤ 𝑁𝑐𝑛𝑜𝑑𝑒𝑠, we will distribute 𝑁𝑐𝑛𝑜𝑑𝑒𝑠/𝑁𝑟𝑎𝑛𝑘𝑠 per process.

5.3.2 Enumeration methods

Tools like Score-P and Scalasca generate the call tree in a Depth-first-search (DFS) order, although

this is not always the case. However, benchmarks are provided with a BFS order of Ids, specifically for

these performance studies. This enumeration is derived from the method used to create the call tree

during the development of a Cube4 file. It's important to consider this difference when analyzing the

results.

Within the scope of this thesis, we study different enumeration strategies which are: Plane

enumeration, Round-Robin, Random shuffle [44] and little bit modified Depth-first-search as we name it

Deepest chain.

Breadth-first-search (BFS) is a method used to search for a specific node within a tree data structure

that meets a predetermined condition. The process begins from the root of the tree and examines all

33

nodes at the current depth before advancing to those at the next depth level. Because we calculate an

Inclusive value, the call path tree is already sorted in BFS fashion as we described in chapter 4.2.3.

Therefore, we simplify the enumeration by doing a plain distribution of cnodes as shown in Figure 16. The

figure uses red color numbers to denote the MPI ranks (0, 1, 2, 3), and the blue color numbers to indicate

the position Id of each call path (node) in a list of call paths. This enumeration is derived from the method

used to create the call tree during the development of a Cube4 file.

Figure 16: Plain enumeration (BFS) of MPI Ranks

The above figure shows a Binary tree with 63 Call Paths (cnodes) and Plain enumeration method of 4 MPI Ranks.

Round-Robin distribution is a method where processes, numbered from zero up to 𝑁𝑟𝑎𝑛𝑘𝑠 − 1, are

sequentially assigned to each node within a call tree. For example, let’s assume tree has 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 and

𝑁𝑟𝑎𝑛𝑘𝑠 ranks, where 𝑁𝑟𝑎𝑛𝑘𝑠 ≤ 𝑁𝑐𝑛𝑜𝑑𝑒𝑠. Assignment of ranks to nodes starting from 0 to 𝑁𝑟𝑎𝑛𝑘𝑠 − 1 is in

a cyclic manner. This means after reaching the 𝑁𝑟𝑎𝑛𝑘𝑠 − 1th rank, the rank starts again from 0. The

formula to calculate the rank of each node would be

𝑟𝑎𝑛𝑘(𝑖) = 𝑖 𝑚𝑜𝑑 𝑁𝑟𝑎𝑛𝑘𝑠 (5.2)

where i is the index of the node, ranging from 0 to 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 − 1.

34

Figure 17: Round-Robin enumeration of MPI Ranks
The above figure shows a Binary tree with 63 Call Paths (cnodes) and Round-Robin enumeration method of 4 MPI

Ranks.

Depth-first search (DFS) is an approach for exploring or locating elements within tree or graph data

structures. It begins at the root node and enumerates each branch to the fullest extent before reversing

direction. It will be called the Deepest chain method after this point, as it is modified compared to DFS in

terms of additional parameter which is leverage. Users can select in cases of non-balanced structures how

many extra nodes can be assigned to a single rank, instead of trying to uniformly distribute them. This

leverage can sometimes bring more deeper chain of cnodes that are assigned to a single rank.

Figure 18: Deepest chain enumeration of MPI ranks

35

The Deepest chain method is believed to outperform the other algorithms up to a certain threshold. This

is attributed to its strategy of segmenting the tree into subtrees where such a distribution promotes an

early and efficient overlap of computation and communication, optimizing the overall processing time.

The tree structure given in Figure 18 presents the 64 call paths distributed across 4 MPI ranks in a

Deepest chain method. The position Id is a way to index or reference each call path in this list. This means

that the distribution of tasks is prioritized to assign the longest sequence of dependent tasks to the same

rank, which can help in maintaining data locality and potentially optimizing communication overhead. The

root of the tree, at the top, is the starting point of the computation and has the MPI rank of 0. From there,

the computation branches out, with each level of the tree representing a further subdivision of tasks.

Random shuffle, as the name says, assigns processes randomly across the call tree but every process

is assigned almost the same amount to the cnodes.

Furthermore, the Random shuffle algorithm in this thesis is designed to evenly distribute nodes

across ranks. The number of nodes assigned to each rank is determined by dividing the total number of

cnodes in the vector by the number of processes involved. When this distribution coincides with a system

characterized by low communication overhead, the Random shuffle algorithm stands to match the

performance of the Deepest chain method, possibly even surpassing it under optimal conditions. The

inherent randomness can lead to a natural balance in the distribution of computational workloads, which

is particularly advantageous when the tasks vary significantly in their computational demands. This

balance ensures that no single rank is overburdened, promoting an efficient use of resources, and

potentially optimizing overall communication overhead.

Of course, many other tree searching algorithms exist. We investigate the influence of these methods

on parallelization performance and possible implications. Therefore, the focus is placed on the evaluation

of their performance in terms of execution speed and memory usage within the given computational

framework.

5.4 Integration

The current CubeLib library is written without MPI or OpenMP integration; however, this is now

changing as all processes will utilize the library simultaneously. We have reworked the calculation

components and the main Cube initialization constructor. As a result, all methods that were public remain

unchanged. They are just reconfigured based on the new calculation and tasking methods. This approach

also works on one process without the MPI which results in the original library. The source code can be

seen in A Appendix - source code.

In the revised setup, each process initiates the cube object and the struct has input parameters such

as MPI rank and the total number of processes. The new initialization looks like this Cube
cube(cube_mpi_rank, cube_mpi_processes).

When cube.cubeOpenReport(…) is invoked, all data is read by the processes and all ranks

enumerate the cnodes in the very same manner, depending on the user’s choice of enumeration methods.

A notable distinction arises during the calculation phase, where specific processes execute their

designated tasks and then engage in communications with other processes to implement a new

calculation algorithm. Consequently, each process is equipped with a taskManager(…) method that

operates within a while loop, actively probing for incoming mock and internal tasks. These tasks,

characterized as MPI datatype objects, consist of seven parameters: taskId, metricId,

metricCalculation, cnodeId, cnodeCalculation, systemId, and

36

systemCalculation. Upon detection of a task, the corresponding process receives it and begins

processing with the get_sev(…) method while remaining alert to new tasks.

Depending on input parameters, Internal calculations can be initiated. Communication between

processes may occur, depending on how many processes are involved as well as the distributing methods

of the cnodes. The get_sev_aggregated(…) method can be invoked by any process, with the cnode

and the desired calculation flavor as its inputs. This method is optimized by dividing the cnode vector of

children into two vectors representing local and remote values. As a first step, an asynchronous request

for remote values is made, followed by the execution of local calculations. After receiving all the results

from remote computations, the calculation concludes with the application of either a plus or minus

operator, depending on the metric's type. The process that holds the final result sends it to process 0,

which initiates the mock request. The cube operation concludes with a termination signal from process 0,

indicating the end of the while loop after the final results are received. With the implementation of this

MPI-integrated CubeLib library, the traditional configuration of the library has been updated, requiring

users to specify MPI compilers.

37

6 Results and discussion

6.1 Experimental setup and configuration

The new library underwent testing on the JURECA [45] supercomputer located at Forschungszentrum

Julich. JURECA uses a combination of Slurm (Simple Linux Utility for Resource Management) [46] and

Parastation [47] for workload management on the available resources.

Figure 19: Jülich Research on Exascale Cluster Architectures (JURECA) at Jülich Supercomputing Centre

(Copyright: Forschungszentrum Jülich / Ralf-Uwe Limbach)

Nodes CPU RAM GPU

480 standard
compute nodes

AMD EPYC 7742,
2×64 cores, 2.25 GHz clock speed

512 (16× 32) GiB
DDR4, 3200 MHz

-

96 large-memory
compute nodes

2× AMD EPYC 7742,
2× 64 cores, 2.25 GHz clock speed

1024 (16× 64) GiB
DDR4, 3200 MHz

-

192 accelerated
compute nodes

2× AMD EPYC 7742,
2× 64 cores, 2.25 GHz clock speed

512 (16× 32) GiB
DDR4, 3200 MHz

4× NVIDIA A100
GPU, 4× 40 GB

12 login
nodes

2× AMD EPYC 7742,
2× 64 cores, 2.25 GHz clock speed

1024 (16× 64) GiB
DDR4, 3200 MHz

2× NVIDIA Quadro
RTX8000

Table 2: JURECA system information

In total, JURECA is configured with 780 compute nodes. and 98,304 CPU cores with a peak

performance of 3.54 petaflops. Users are required to submit batch applications (shell scripts) to dispatch

jobs to compute nodes. An illustrative example of a simple batch script is provided below:

38

#!/bin/bash

#SBATCH --account=<budget>

#SBATCH --nodes=2

#SBATCH --ntasks=128

#SBATCH --ntasks-per-node=64

#SBATCH --output=mpi-out.%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=00:15:00

#SBATCH --partition=dc-cpu

srun ./mpi_cube_server_prototype --cpu-bind=threads

In this illustration, the script runs the mpi_cube_server_prototype file on 2 nodes with a

total of 128 MPI tasks (64 tasks per node). Output and error streams are saved with names containing the

job ID (%j). The execution is assigned to the dc-cpu partition and is restricted to a maximum time of 15

minutes. Additionally, the script ensures optimal performance by binding CPU threads during execution.

JURECA is linked to the Juelich Storage Cluster (JUST) [48] with a storage bandwidth of 350 GiB per second.

JUST functions as a central GPFS fileserver, supporting supercomputing systems like JURECA, JUWELS [49],

JUSUF [50].

6.2 Score-P Instrumentation

In order to do performance measurement such as timings and memory allocations of the new library,

we used Score-P profiling tool [51]. It is important to mention that both CubeLib library and Score-P are

configured with the same compiler on the system, otherwise measurement is not possible. For this setup,

we are using Intel compilers, and its MPI version. To get a good profile, we filter out all the unnecessary

files and methods from CubeLib library during the run time. This is actually the step after the "initial

measurement", which is used to reduce measurement overhead. Such a filtering script looks like this:

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE *

 INCLUDE cube::openCubeReport*

 INCLUDE cube::Cube::get_sev*

 INCLUDE cube::Cube::task_manager*

 INCLUDE cube::process_task*

 INCLUDE main*

 INCLUDE pmpi*

 INCLUDE *Exclusive_sev_aggregated

 INCLUDE *Inclusive_sev_aggregated

 INCLUDE *Mock_task

 INCLUDE *Internal_agg_metric_calculation

 INCLUDE *Kill_Signal

 INCLUDE cube::metric_agg_inclusive_mpi_task*

 INCLUDE cube::metric_agg_exclusive_mpi_task*

 EXCLUDE *cube::Cube::get_sev_adv

SCOREP_REGION_NAMES_END

39

We first exclude all of the files and methods from runtime measurement and include only methods

that are relevant to us such as aggregation calculation methods, openCubeReport(…), get_sev(…),

task_manager(…), processTask(…), etc.

6.3 Performance measurement of new library

To have a better understanding of the results and to determine an optimal number range of MPI

ranks for future use of the library, we test performance of the implemented algorithm on benchmark

cubes that have linear, single-level and balanced tree (or special case - binary tree) structure of the call

paths. To simulate communication with the client, we mock the connection to it and pretend that

connection is established, since the current cube_server is not adapted to the new parallel library. A

script where the user decides the input parameters for MPI Task is being used as simulation for client-

server communication.

We initialize the MPI environment with the highest instance of thread safety

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided), and define a

MPI_Task with its parameters. Parameters will always be set up to calculate the root cnode Inclusive

value for an Exclusive type of metric, as it is the most compute intensive operation and further calculations

are “given away” afterwards due to internal caching. In the case of an Exclusive value for Inclusive metric,

only children of the root node in the call path tree are included in task computation as given in formula

(4.2).

6.3.1 Prototype timings

To study the influence of the different aspects of the structure of the call tree on the parallelization

efficiency, we do measurements on the artificial benchmark cubes. Then in the following chapter we

measure the timings of the real-life cubes. First, we investigate the timings of every rank enumeration

algorithm and its scaling capabilities. All the figures are represented on a log-log scale, and the timings

value in seconds, are taken from Score-P measurements profile. In the profile, we look for MPI rank onto

which root cnode was distributed and check the timing for its first thread that initiated the

process_task(…) method. That is our mock task coming from the user and corresponds to “time to

result” timing, which corresponds with the reaction time of the client. Hence, as short this time is, as more

responsive the client (CubeGUI) is, which leads to comfortable and efficient performance experience

within the CubeGUI.

Important to notice is that every method starts at the same point as we have only 1 MPI Rank

available, therefore the timing of 1 Task doesn’t depend on the enumeration method rather the total

number of Call paths and Locations. All methods end in the same point, since 𝑁𝑟𝑎𝑛𝑘𝑠 = 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 therefore

the enumeration methods don’t play a role. If 𝑁𝑟𝑎𝑛𝑘𝑠 > 𝑁𝑐𝑛𝑜𝑑𝑒𝑠, then 𝑁𝑟𝑎𝑛𝑘𝑠 −𝑁𝑐𝑛𝑜𝑑𝑒𝑠 ranks become

idle, and we don’t observe such scenarios.

Result 1.1: In the three results presented, we explore the timing outcomes for prototypes and how

different call tree structures affect it, keeping the total number of cnodes and locations fixed. Figure 20

begins the analysis with a linear tree structure, indicating that parallelization might not be required. This

is due to a steady increase in timing, which is related to the tree structure. Both computation and

communication become expensive, leading to longer processing times for each method.

40

Figure 20: Task timing of enumeration methods on linear tree

What we can observe is that the Plain enumeration (or BFS) and Deepest chain are equivalent, but

due to communication overhead timings increase, as only one process is executing the task. In this

scenario, we will have that the total number of communications is 𝑁𝑐𝑜𝑚𝑚 = 𝑁𝑟𝑎𝑛𝑘𝑠 − 1 but, due to tree

structure, we result in serial computing. The performance of the other two methods is less effective,

primarily because the communication overhead significantly increases. This is because one process is

responsible for computing one cnode at a time, and 𝑁𝑐𝑜𝑚𝑚 = 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 − 1. This setup leads to

serialization and overhead in both aspects. While other cnodes are calculated, previous calculation tasks

are “on hold”, occupying memory and resources. which leads to the crash of Score-P (version 8.1).

Unfortunately, their analysis graph could not be completed due to time constraints on JURECA and the

memory limitations of Score-P.

Let’s take a close look, why it happens. In Figure 21, we have an example of 16 cnodes and 4 MPI

ranks, and 2 different enumeration methods-Plain and Round-Robin enumeration. Computation of values

is done in a recursive manner as shown in formula (5.1), with a split of local and remote values. In case of

plain enumeration, rank 0 starts calculating, but has to wait for rank 1 to finish its part. But again rank 1

cannot finish until rank 2 does, and this goes on until rank 3, which holds the last value that is necessary

for calculation. Then the communication goes backwards, resulting in only 1 process working at the given

time, no parallelization whatsoever. In the second picture, with Round-Robin enumeration, every rank

needs to communicate to the next one at each calculating step, making them all wait for each other. This

is an even worse scenario as communication time gives larger overhead. Such results lead to never having

the full split of local and remote contributions at the same time for a given cnode, as it only has one direct

child.

41

Plain enumeration of MPI Ranks Round-Robin enumeration of MPI Ranks

Figure 21: Example of Plain and Round-Robin rank enumerations on linear tree

Result 1.2: How the proposed parallelization algorithm performs for another degenerate case, for

the case of a single level tree, which is quite opposite than the linear tree. Single level tree has one root

cnode, and the rest cnodes are direct children of it. The rank enumeration doesn’t play a role as all cnodes

, except the root cnode, are leaves. Meaning, that the timings for all enumeration methods in this setup

are very similar, and the total number of communications is 𝑁𝑐𝑜𝑚𝑚 = 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 −
𝑁𝑐𝑛𝑜𝑑𝑒𝑠

𝑁𝑟𝑎𝑛𝑘𝑠
− 1. All the

additions are handled by the root process.

Figure 22: Task timing of enumeration methods on single-level tree

42

We notice that as the number of ranks increases, the timings become flattened, but parallelization

still results in faster execution. This outcome is the result of spreading the workload among various

processes. Yet, reducing the workload for each process to an even smaller amount doesn't impact the

timing anymore. This occurs because the root process has already summed up its local contributions, and

then proceeds to request remote values at a specific moment. The performance gain due to parallelization

reaches minimum early on, and it is sufficient to utilize cube_server with a relatively small amount of

MPI ranks, in this case would be 16 MPI ranks.

Result 1.3: The timings for the binary tree are measured five times, and the graph includes error bars

representing the standard deviation for each data point. By repeating measurements multiple times and

averaging the results, we can better isolate the actual performance characteristics of the parallelized

application from the background noise inherent in the system. We can see similar performance of the

Round Robin, Random shuffle and Deepest chain methods which indicates that the communication cost is

not the primary bottleneck in this context, and that the computational workload is more significant as

when it happens during execution. Communication and computational overlap is being visible, as different

cnodes that are located on the same rank are being computed simultaneously.

Figure 23: Task timing of enumeration methods on binary tree

The chart displays four enumeration methods: BFS (Plain distribution), Round Robin, Random Shuffle and Deepest chain with

their timing's values for different number of processes. Cube file has 1024 Call paths and 10000 locations. The points are

represented with standard deviation as every method is measured five times.

The reason for the Plain enumeration method to be the worst in this scenario, is that with a small

number of MPI ranks, the top of the tree is being processed by the rank 0. Hence it is serialization by rank

0 with small parallelization when calculation is deep in the call tree, and only with sufficient number of

ranks depending on depth of call tree and total workload, rank 1 appears high enough in three to enable

parallelization of the computation. After increment of ranks it starts to speedup due to less computation,

43

and then it merges with other algorithms as workload and communication start to overlap in the early

stage of distribution.

Plain enumeration of MPI Ranks Deepest chain enumeration of MPI Ranks

Figure 24: Example of Plain and Deepest chain rank enumerations on binary tree

The Random shuffle can result in a communication pattern that is sufficiently efficient, such that the

additional optimization provided by the Deepest chain method does not translate into a substantial

performance improvement. In general, parallelization results in timing speedup up to a certain point,

where it starts to vary depending on the number of ranks involved. The interval where minimum is

reached is between 64 and 256 MPI ranks.

To visualize the parallel computation, an example in Figure 25 can be seen. For 4 MPI ranks, and 15

cnodes, rank 1 starts computing two tasks, very early in computation, but also it computes two more tasks

at the very bottom asynchronously. Therefore, such task distribution leads to speed up even for random

rank enumeration.

Figure 25: Example of Random shuffle rank enumeration method on binary tree

44

Results also suggest that as the number of MPI ranks increases, the execution time between the

various methods diminish, indicating that the impact of the task distribution strategy decreases with

higher levels of parallelism. This is because the communication overhead becomes expensive, since we

have less workload per process. We can filter our selection of enumeration methods based on our

findings: Deepest chain emerges as the most promising, while Random shuffle stands out as a reliable

option capable of adapting to tree structures.

Result 2: We measure timing on different balanced and non-balanced tree cube types, with

increment on children per cnode and fixed number of total cnodes, using Deepest chain enumeration

method. With the start from the binary tree, and as the depth of the tree reduces, timings intend to

converge to the single level tree.

Figure 26: Task timing with Deepest chain and balanced tree

In this setup, for 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 = 𝑁𝑟𝑎𝑛𝑘𝑠, results don’t end in the same point, since communication

patterns change, as we have more cnodes on one side of the tree. A detailed example of such a tree and

communication pattern, with 4 MPI ranks, 32 cnodes and 4 children per cnode, can be seen in Figure 27.

Rank 0 has the most levels in terms of deepness of the tree, therefore his remote calculations are going

to be faster computed, resulting in overlap of its local contributions.

45

Figure 27: Example of Non-Balanced tree with Deepest chain enumeration method

 The more trees get flatter, the ranks that are on leaves finish their own calculation, and parent ranks

need to handle all the summations, making the total value computation workload more significant.

Communication becomes expensive, resulting in increased timings. Despite this, we still observe some

overlap, indicating that parallelization continues to be beneficial, especially on intervals between 16 and

128 ranks.

Result 3.1: We continue studying the timing of task within a binary tree structure using Deepest Chain

enumeration of MPI ranks with a fixed system tree size of 10k locations and varying numbers of cnodes

(1024, 2048, 4096, and 8192). The timings measured on 1 Rank now start from different points, as the

workload increases, and the curves don’t meet at the end.

Figure 28: Task timing with Deepest chain and binary tree for different number of cnodes

46

This increment of timing is expected due to the large number of computations per rank, as we have

more cnodes to compute, but the number of communications remains unchanged. Hence, the method

keeps the behavior of the curve throughout different cube structures with a change to reach the

minimum, where points usually shift up right as computations become heavier. Interval in which the

minimum is located is usually between 64 and 256 processes. This observation will help us to determine

the optimal interval of processes for future setups. Although it is possible to extend measurements on

more than 1024 MPI ranks, as there are more than 1024 cnodes, we simply stop there since the timings

start increasing again at the end points.

Result 3.2: In Figure 29, we study the impact of how different number of locations in system tree and

fixed number of total cnodes affect the timings for binary tree structure using Deepest chain enumeration

method of MPI ranks. In this setup, the timings measured on 1 Rank will start from different points, since

the computation per cnode increases.

Figure 29: Task timing with Deepest chain and binary tree for different number of locations

We see the same curve behavior throughout different cubes, and we observe that with increasing

number of locations individual and therefore total workload grows, hence the curve timings are increased.

The lowest point moves upwards and to the right as the system tree grows bigger. Parameters in mock

task are defined so that we always compute the call tree node in all locations. We find that the time it

takes to complete the task is related not only to the size of the call tree but also to the size of the system

tree.

Result 3.3: Using the same cube file structure, we perform test measurements but switch the

enumeration algorithm to Random shuffle. Based on our earlier findings from result 1.3 with binary trees,

we expect the Random shuffle method in this setup to be quite similar to the Deepest chain method.

47

Figure 30: Task timing with Random Shuffle and binary tree for different number of locations

Timings have a minor increment compared to the previous measurement with Deepest chain

method, but the curve behavior remains. Communication and computational overlap are a reason for this

speedup of timings, as one rank is computing tasks in parallel. The measurements are repeated five times,

as we want to isolate background noise inherent in the system. In the case of 10 000 locations, for 32 and

64 ranks, a bit larger deviation is seen, but it doesn’t affect the stability of the method. Minimum shifts

up right starting from 64 to 512 ranks, as the number of locations increase.

Result 4.1: We have seen from large cubes how the timings are measured, and in all cases, we see

that finding minimum points is possible. We want to study the impact of relatively small, micro cube files

on the task timings. Cube files in Figure 31 have only 64 cnodes and different number of locations in the

system tree, and ranks are enumerated with the Deepest chain method. The measurements don’t start at

the same point, as we have less workload per process, but they all end up at the same point. This is

because for the smallest case, communication becomes expensive and as we increase the computation

on each node, the task timing becomes dominated by the computation rather than the communication

or the structure of the enumeration method. Therefore, the difference in initial task distribution becomes

less relevant, and the overall task time converges because the majority of time is spent on node-level

computation.

For such small cubes, we see that parallelization is almost not necessary, as communication becomes

overhead, due to fast computations of tasks. With the increment of the total number of locations from

8000, the minimum point becomes visible on 8 processes as computational workload becomes more

dominant.

48

Figure 31: Task timing with Deepest chain and small binary tree for different number of locations

Result 4.2: In Figure 32, the same setup was repeated as in result 4.1 but the enumeration method

of MPI ranks is Random shuffle. We see similar results as in the previous setup, therefore the influence of

enumeration methods does not play a role for micro cubes. Once the workload becomes significantly

large, the speedup can be seen on 8 MPI ranks.

Figure 32: Task timing with Random Shuffle and small binary tree for different number of locations

49

Result 4.3: For the final measurement of task timing on the benchmark micro cubes, we study the

impact of different call tree sizes with binary structure, on a total number of 1000 locations with Random

shuffle enumeration method.

Figure 33: Task timing with Random Shuffle and small binary tree for different number of cnodes

The workload per cnode is now fixed, but for relatively small call trees timings go up. This result is a

direct consequence of communication overhead, and it is persistent for all measurements on a small

number of MPI ranks. Starting from 1024 cnodes, a minimum point is reached on 64 ranks. Resulting that

if we have significantly small call and system trees, parallelization is not needed.

Result 5: Strong scaling plot is a common way to illustrate the effectiveness of parallelization in

computational tasks and the results indicate that there is a limit to the benefits gained using the Deepest

chain and Random shuffle methods. In Figure 34 such a scaling plot is presented. Initially, as the number

of processors increases, the speedup also increases, but it does not keep pace with the ideal (linear)

speedup. The plot shows that the actual speedup stops increasing for both methods and this is typical

behavior in parallel computing where the overhead of communication starts to negate the benefits of

adding more processors. Ideally, efficiency should be close to 1, indicating that additional processors are

being utilized effectively and contributing proportionally to performance gains.

p 1 2 4 8 16 32 64 128 256 512 1024

Tparallel 33.85 17.79 11.21 6.62 4.13 3.12 2.72 2.7 3.62 4.71 6.3
S = Tserial / Tparallel 1 1.902754 3.02 5.11 8.19 10.85 12.44 12.4 9.35 7.18 5.37

E = S / p 1 0.951 0.724 0.638 0.512 0.339 0.194 0.096 0.036 0.014 0.005

Table 3: Speedups and Efficiencies
Speedups (S) and Efficiencies (E) of a Cube’s 1 task on a binary tree with 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 = 1024 and 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 10000

with Deepest chain enumeration of MPI Ranks. 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 denotes time spent in parallel execution of the task, and

𝑇𝑠𝑒𝑟𝑖𝑎𝑙 denotes time spent in executing the task on one process.

50

Figure 34: Scaling plot of Deepest chain enumeration method

51

6.3.2 Heuristic rules for estimating MPI rank interval

Now we can summarize previous results and give a proposal on what the optimal interval of ranks is,

based on the Cube4 file structure and its size. Here are the following rules:

1. Baseline interval:

• Start with a baseline MPI rank interval of 32 to 256 ranks as derived from previous performance

analyses charts.

2. Cnode consideration:

• If 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 ≤ 1000: Use the lower end of the baseline interval (16-64 ranks).

• If 1000 < 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 ≤ 8000: Use an interval that captures the plateau of performance before

diminishing returns (32-128 ranks).

• If 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 > 8000: Consider extending the interval to 256-512 ranks, monitoring for diminishing

returns due to overhead.

3. Location consideration:

• If 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 10000 : Use the lower end of the baseline interval (16-64 ranks).

• If 10000 < 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 50000: Use the mid-range of the baseline interval (32-128 ranks).

• If 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 > 50000: Use the upper end of the baseline interval (192-256 ranks) or higher if

𝑁𝑐𝑛𝑜𝑑𝑒𝑠 is also large, monitoring for diminishing returns due to overhead.

4. File size:

• If file size is in GiB range: Consider the upper end of the baseline interval or beyond (64-256 ranks),

especially if 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 and 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 are also high.

• If file size is in MiB range: Stick to the baseline interval unless 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 or 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 suggest

otherwise.

5. Average number of children per cnode:

• If average children per cnode is ≤ 3: Stick to the lower end of the baseline interval due to likely

shallower tree depth (16-64).

• If average children per cnode is > 3: Consider the upper end of the baseline interval to account for

potentially deeper tree structures that could benefit from more ranks.

An example of how to apply these rules would be the following. Let’s take a cube file with 200 cnodes

and 30,000 locations with average children per cnode to be of 2. We start with a baseline interval which

is 32-200 ranks, then since 𝑁𝑐𝑛𝑜𝑑𝑒𝑠 ≤ 1000 and 10000 < 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 50000, we switch first to a bit

lower interval of 16-64 ranks and then based on the overhead, we do mid-range interval of it and get 16-

96, as we have less cnodes. Since the cube file size will be obviously in GiB and average number of children

per cnode is 2, we decided to reduce the upper limit as we have less cnodes and we stick to the lower end

of the interval, which is 16-64. Such trees and predicted intervals can be seen in the next section.

52

6.3.3 Real life cubes

A clear improvement is visible on benchmark cubes, in which they had a structured order of nodes in

the call tree, and now with more insights into the algorithms we are ready to test the prototype’s

performance on real-life cube files. We split the cube files into groups of two: large-file size is in GiB, small-

file size is in MiB. It's important to note that not all of the data was used in the calculation, but rather only

a part of it, as calculation includes only one metric. All the cube files are gathered throughout various

performance measurements, and the details of them can be found in Table 4 and Table 5. In the tables is

also a column with the predicted interval of MPI ranks for which we believe it is going to be the ideal

measurement setup, as one example shown in chapter 6.3.2.

Cube_Files N_m N_Cn N_loc File Size (GiB) Av_Children_Cn Pr_Interval

nekbone/1m 14 221 1048576 10.65 2(2.4555) 32 - 128
nekbone/262k 14 193 262144 2.36 2 16 - 64
LargeCubes/64k 187 222 65536 9.17 2(2.4667) 32 - 128
LargeCubes/256k 188 38 262144 6.19 3(2.6428) 4 - 32
LargeCubes/32k 187 222 32768 4.58 2(2.4667) 16 - 64
LargeCubes/16k 190 222 16384 3.29 2(2.4667) 16 - 64

Table 4: Large cube file information
N_m: Total number of metrics, N_Cn: Total number of cnodes, N_loc: Total number of locations, Av_ Children_Cn: Average

number of children per Cnode, Pr_Interval: Predicted interval

In Figure 35, we measure the timings of cube’s task execution using the Random Shuffle method,

while repeating the runs for five times. Random shuffle is chosen, as it doesn’t depend on the tree

structure as well the scaling of the method is somewhat similar when compared to Deepest chain.

Figure 35: Real life big cubes

53

The red colored dotted intervals in the line charts represent our expectations of the minimum time

we aim to reach, based on the rules we set in the previous section. Predicted interval aligns with the

results, and using parallelization on the real-life large cubes improves the time execution of the task, when

compared to the sequential execution.

In all cases, the more MPI ranks used, the better the performance we see of the new library,

especially for the largest cube. Call tree sizes are not large, as it only goes up to 222, but each cnode carries

a heavy computational load as we have large system trees. Especially for the red line, it is extreme case

with large system tree, and small call tree, hence it is best to assign 𝑁𝑟𝑎𝑛𝑘𝑠 = 𝑁𝑐𝑛𝑜𝑑𝑒𝑠. In the graph, the

curve's minimum wasn’t reached, and it has a slightly higher number of children per cnode, therefore the

reason why it is slightly flatter, similar to the result 2And the more MPI ranks are used, which means

assigning fewer nodes per rank, leads to a speedup in performance. This is because each rank can focus

on processing its smaller, more manageable set of cnodes more efficiently, resulting in improved overall

performance. Every rank takes enough time for computation of cnode value, which implies that the

communication pattern between ranks doesn’t play a role.

We test the prototype on smaller real-life cubes with the same enumeration method Random shuffle,

as it has proved to be stable from the previous measurement.

Cube_Files N_m N_Cn N_loc File Size (MiB) Av_Children_Cn Pr_Interval

LargeCubes/scout 65 221 1048576 894.2 2(2.4555) 16 - 64
Hemelb 15 41 239615 812.24 6(5.66667) 2 - 16
Rohed 6 33 524288 656.38 5(4.57143) 2 - 8
sum_papi 17 832 6144 296.48 2(2.3994) 4 - 16
bnbpbn 12 4126 1280 182.98 6) 32 - 128
ICON-OMP+HWC 15 5621 9 6 3(2.5111) 32 - 128
mini_lpt960 15 68 960 4.1 24 2-16

Table 5: Smaller cube file information

From Figure 36, the predicted interval is not precise as in the previous measurement. This can be due

to too many non-balanced call tree structures. But even in mid-range size cubes, parallelization leads to

speedup of task timing, except for micro cubes. This is expected as we showed for similar micro cube files

that the communication patterns don’t play a role until a certain workload is reached per rank.

54

Figure 36: Real life small cubes

6.3.4 Memory recordings

With the growing size of the cube files, which one wants to open and analyze, memory might be a

limiting factor.

We want to study first the impact of different cube files, where we vary the number of nodes in call

and system trees, on memory footprint when information about the cube file is being loaded or read. A

general formula for calculating the memory footprint can be given as:

𝑀footprint = 𝑂(𝑀cube_description_data)⏟
A

+ 𝑂(𝑀metrics_data)⏟
B

 (6.1)

In the current approach we cannot change the first term in formula, hence with a large cube one can

hit the upper limit. However, we can check how much memory it takes when we load the cube file.

Obtaining this measurement is done again via Score-P profiling. We set the variable

SCOERP_MEMORY_RECORDING to true and look for maximum memory heap allocation of

openCubeReport(…) in profile obtained from the performance run. Such measurement can be seen

in Figure 37.

55

Figure 37: Memory footprint

Figure shows a memory measurement of the cube file. Configuration names: Cn - Call path Nodes, Stn - System Tree Nodes, Lg -

Location groups, Loc - Locations

A linear growth starts appearing from 100 call or system nodes, and on average 2 kilobytes per

cnode/system tree node is the memory watermark. Therefore for example, if one would have limited

memory of 512 MiB of RAM on their computer setup, it can not even open a big cube file that has more

tehn 100000 cnodes and 100000 locations. Nevertheless, even if one manages to open, exploring such a

cube file can result in a bad user experience and crashes of software due to memory limitations. With the

new MPI library we can also measure the amount of memory per process when handling such requests

coming from the user while exploring the file.

If we extend the formula (6.1) for both terms, we get

𝑀footprint = 𝒪(𝑁metrics) + 𝒪(𝑁cnodes) + 𝒪(𝑁stn)⏟
A

+ 𝒪(𝑁metrics ⋅ 𝑁cnodes ⋅ 𝑁stn)⏟
B

 (6.2)

It can be seen that the largest contributor in this equation comes from the last term. If we distribute the

compute nodes to different ranks, it will result in a lower memory footprint per process.

In order to prove that data distribution if properly done, we see in Figure 38, a maximum memory

allocation footprint of rank 0, when executing the mock task for binary call tree using Deepest chain and

Random shuffle enumeration methods. Cube file with the total memory size of 13 GiB, has 8192 cndoes

and 100000 number of locations in the system tree, was used for this test.

56

Figure 38: Memory footprint of task execution from one process

The result shows a linear behavior of reducing the memory footprint on rank 0, while increasing the

number of processes with Random shuffle enumeration. This is expected, as we distributed the workload

uniformly to all ranks, where every rank computes its own data and only sends one result per task to its

parent rank.

A similar behavior can be observed for Deepest chain enumeration, but starting from 256 ranks, the

memory starts to increase. This can be due to clustering of cnodes in the tree, resulting in more memory

resources to be used as local contributions are higher, as the method is designed to preserve parent-child

relations as much as possible. Therefore, as for overall measurements Random shuffle showed to be a

solid and efficient method when compared to other enumeration methods of MPI ranks.

In conclusion we can say that as long as we can load the metadata into the RAM, we can give so many

MPI ranks to the cube_server, that individual memory footprint drops under the limit of available

memory, and one would be able to process such large cubes.

57

7 Conclusion and future work

7.1 Conclusion

During the performance analysis, the generation and reading of the desired cube files occur in three

steps: First, the initial measurement; second, refining the cube files based on previous or inadequate files;

and third, iterating the first two steps until achieving satisfactory measurements. Initial measurement is

usually the least useful and largest one, but perhaps most important one as one uses it to refine the

filtering, selective recording in order to minimize impact of the measurement overhead on the quality of

the measurement. This thesis aims to improve this step. The objective was to rewrite the CubeLib library,

with the future potential of its Cube server tool, which is used to produce and read data models. We

improved the current calculation methods and task distribution, enabling parallel data computation by

different processes.

The findings of this study demonstrate that parallelization is beneficial for processing cube files of

any size, as it consistently achieves optimal timings for a given number of processes. Compared to

traditional sequential processing methods, parallel approaches were found to be more efficient and

quicker, a conclusion supported by tests conducted on various datasets. This increased efficiency is due

to the equal distribution of data across processes and its asynchronous management, which is largely a

result of the overlap between computation and communication processes. Notably, the library, when

parallelized, is enough to be effective even in single-process configurations, thus serving different user

requirements.

In the context of MPI rank enumeration as we have seen in 5.3.2, Random shuffle enumeration

exhibits a surprisingly solid performance under the condition of a truly uniform distribution and Deepest

chain enumeration can be a second choice. However, the primary advantage of random enumeration is

that it doesn’t depend on the structure of the call tree, hence it is easier to implement. Downsize is that

in narrow deep call trees, like in linear trees, it performed weaker compared to the Deepest chain as it

can be seen in Figure 20.

When analyzing real-world Cube4 files, it is evident that even small to moderately sized cubes benefit

from the utilization of MPI-parallelized library. Only micro-cubes do not derive significant advantages from

this parallelization as seen in figures Figure 32 and Figure 33 (see chapter 6.3.1. results from 4.1-4.3).

However, in the case of “deep narrow” cubes, which are typical for initial measurement as one performs

on a small scale and without any filtering or selective recording, and have larger call tree, indicate

noticeable improvements in the computation time.

Heuristic rules are formulated which allow users to choose parallelization parameters, such as

number of MPI ranks, by examining the cube without loading the data. Hence one can develop a small

examination tool, which gives advice or even generates Slurm script for cube_server.

Individual memory footprint drops linearly as expected, hence, if the description of dimensions “fits”

into the memory, one can always utilize enough MPI ranks to the server, so that data also fits in the

memory. This enables processing of enormous cube files, as in call tree size no filtering is needed and as

in location size can be used from exascale HPC systems. For such large cube files manual exploration is

possible, as maximal speedup from 10 to 25 times has been observed throughout the results.

58

7.2 Future work

Looking ahead, future efforts should aim at using OpenMP or tasks parallelization strategy to

compute individual load (value of own cnodes), where one can press down timings further and enable

even further comfortable manual performance analysis. Using additional resources on individual MPI

processes, such as GPU cards, will allow from one side 1-) more data load, which means larger individual

load, larger number of locations, 2-) speedup of the calculation value of own cnode. This opens even more

the possibility to process larger cubes, coming perhaps even from the exascale HPC system.

So far, we have studied only "data" metrics, but cube also supports derived metrics. One needs to

study how compatible this parallelization pattern is with the derived metrics engine. First tests showed

that if the CubePL expression is local (access to the same cnode as the request parameters) - then it works

without further modification. However, the CubePL expression might be "non-local" and this situation

requires further deeper study.

In this thesis we have been studying only cube_server, which only delivers data to the client.

Hence get_sev(…) has been modified. It is expected that any tool, which only reads cube files will

benefit from this parallelization, however, this needs to be studied, if cube_dump, cube_calltree,

and other tools actually benefit.

Parallelization is only applied on the call tree and it showed promising results. However, it is still

possible to make parallelization along the system tree. It is expected that cube_remap2 tool will profit

from the configuration, where the number of MPI ranks is the same as it was during the measurement.

Meaning that, one should include remapping steps into the measurement script as a post processing step.

Many tools do produce another cube as an output. This requires study, how set_sev(…) needs to

work in an MPI environment and if it is possible to profit from it. Keyword should be on the “locality” of

the data. For reading it has to be "close" to each other, and for writing as separate as possible.

To get to the production stage one needs to remove "mocking" and replace it with the actual

connection to the client. As every HPC system has individual safety protocols, this has to be worked out.

The current implementation of CubeLib has few build dependencies and therefore can be built on nearly

every platform. With MPI parallelization it gets one. Therefore, it is a separate task to implement MPI

communication in such a way that one still can build a CubeLib library in a non-MPI environment, using

preprocessor macros, or wrappers of any other techniques.

59

8 References

[1] Bell, G., Cady, R., McFarland, H., Delagi, B., O'Laughlin, J., "A new architecture for minicomputers-,"

AFIPS Press, vol. 36, pp. 657–675.

[2] Richard M. Russell, "The CRAY- 1 Computer System," Computer Systems, vol. 21, 1978.

[3] William Daniel Hillis, "The Connection Machine," Massachusetts Institute of Technology,

Cambridge/USA, June/1985.

[4] Erol Gelenbe, "Performance analysis of the connection machine," ACM, 1990.

[5] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V. Packer, Eds., Beowulf: A

Parallel Workstation For Scientifıc Computation, 1995.

[6] Jarett Cohen, "Computing with Beowulf," R and D Magazine, 1999.

[7] Wikipedia, Beowulf cluster. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Beowulf_cluster&oldid=1189158357 (accessed: 13-Feb-24).

[8] Michael W. Berry,Charles Grassl,Vijay K. Krishna, "Blocked Data Distribution for the Conjugate

Gradient Algorithm on the CRAY T3D," University of Tennessee, 01-August-1994.

[9] Cray Research Inc | Encyclopedia.com. [Online]. Available: https://www.encyclopedia.com/social-

sciences-and-law/economics-business-and-labor/businesses-and-occupations/cray-research-inc

(accessed: 13-Feb-24).

[10] W. Daniel Hillis, Lewis W. Tucker, "The CM-5 Connection Machine," Communication of the ACM, vol.

36, 1993.

[11] I. Buck, "GPU Computing: Programming a Massively Parallel Processor," in GPU Computing:

Programming a Massively Parallel Processor, San Jose, CA, 2007, p. 17.

[12] NVIDIA Developer, CUDA Zone - Library of Resources. [Online]. Available: https://

developer.nvidia.com/cuda-zone (accessed: 13-Feb-24).

[13] M. Ginsberg, Ed., Supercomputers: Challenges to designers and users, 1982.

[14] B. Wilkinson and C. M. Allen, Parallel programming: Techniques and applications using networked

workstations and parallel computers, 2nd ed. Upper Saddle River NJ: Pearson/Prentice Hall, 2005.

[15] P. S. Pacheco, An introduction to parallel programming. Amsterdam, Boston: Morgan Kaufmann,

2011.

[16] Sarita V. Adve et. al, Parallel Computing Research at Illinois: The UPCRC Agenda, 2008.

[17] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts. Hoboken NJ: Wiley, 2013.

[18] Wikipedia, OpenMP. [Online]. Available: https://en.wikipedia.org/w/index.php?title=OpenMP&

oldid=1199889263 (accessed: 01-Mar-24).

[19] F. Nielsen, Introduction to HPC with MPI for Data Science. Cham: Springer International Publishing,

2016.

[20] HPCToolkit Home. [Online]. Available: http://hpctoolkit.org/ (accessed: 14-Feb-24).

[21] Paraver: a flexible performance analysis tool | BSC-Tools. [Online]. Available: https://tools.bsc.es/

paraver (accessed: 14-Feb-24).

[22] C. Roessel, VI-HPS :: Projects :: Score-P. [Online]. Available: https://www.vi-hps.org/projects/score-

p/ (accessed: 14-Feb-24).

[23] D. Becker, Scalasca. [Online]. Available: https://www.scalasca.org/ (accessed: 14-Feb-24).

[24] GWT GmbH, Vampir 10.4. [Online]. Available: https://vampir.eu/ (accessed: 14-Feb-24).

[25] H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Tools for High Performance Computing 2011.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

60

[26] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr, "Cube v4: From Performance Report Explorer to

Performance Analysis Tool," Procedia Computer Science, vol. 51, pp. 1343–1352, 2015, doi:

10.1016/j.procs.2015.05.320.

[27] The Scalasca Development Team, "Scalasca 2.3 - User Guide: Scalable Automatic Performance

Analysis," Jülich Forschungszentrum, 2016.

[28] Forschungszentrum Jülich, Performance properties: Scalasca Patterns. [Online]. Available: https://

apps.fz-juelich.de/scalasca/releases/scalasca/2.5/help/scalasca_patterns.html (accessed: 14-Feb-

24).

[29] The Scalasca Development Team, "CUBE 4.3.4 – User Guide: Generic Display for Application

Performance Data," Forschungszentrum Jülich, 2016.

[30] Bine Brank, "Parallel MPI IO in Cube: Design & Implementation," Bergische Universität Wuppertal,

Forschungszentrum Jülich, Germany, 2018.

[31] F. W. Fengguang Song, "CUBE - User Manual: Generic Display for Application Performance Data,"

University of Tennessee, 2005.

[32] Brian Wylie, "Analysis report examination with Cube," Jülich Supercomputing Centre, Tennessee,

USA, Apr. 2019. Accessed: 01-March-2024. [Online]. Available: https://www.vi-hps.org/cms/upload/

material/tw31/Cube.pdf

[33] University of South Florida, Point-to-Point Communication. [Online]. Available: http://

www.rc.usf.edu/tutorials/classes/tutorial/mpi/chapter4.html (accessed: 15-Feb-24).

[34] O. Tatebe, Y. Kodama, S. Sekiguchi, and Y. Yamaguchi, "Highly efficient implementation of MPI point-

to-point communication using remote memory operations," in Proceedings of the 12th international

conference on Supercomputing, Melbourne Australia, 1998, pp. 267–273.

[35] R. Farber, CUDA application design and development. Waltham MA: Morgan Kaufmann, 2011.

[36] Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard: Version 3.0," 2012.

[Online]. Available: https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[37] E. Castillo et al., "Optimizing computation-communication overlap in asynchronous task-based

programs," in Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,

Washington District of Columbia, 2019, pp. 415–416.

[38] M. Sergent, M. Dagrada, P. Carribault, J. Jaeger, M. Pérache, and G. Papauré, "Efficient

Communication/Computation Overlap with MPI+OpenMP Runtimes Collaboration," in Lecture Notes

in Computer Science, Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati,

Eds., Cham: Springer International Publishing, 2018, pp. 560–572.

[39] The Scalasca Development Team, "CubeGUI User 4.8 - User Guide: Introduction in Cube GUI and its

usage," Forschungszentrum Jülich, 2023.

[40] The Scalasca Development Team, "CubeLib4.5 - Derived Metrics: Intoduction in CubePL and Cube’s

derived metrics," Jülich Forschungszentrum, 2020.

[41] Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf F., J. N. Wylie, B., Ed., Further improving the

scalability of the scalasca toolset. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[42] Wikipedia, Breadth-first search. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Breadth-first_search&oldid=1197517460 (accessed: 01-Mar-24).

[43] Wikipedia, Depth-first search. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Depth-first_search&oldid=1199710840 (accessed: 01-Mar-24).

[44] std::random_shuffle, std::shuffle - cppreference.com. [Online]. Available: https://

en.cppreference.com/w/cpp/algorithm/random_shuffle (accessed: 01-Mar-24).

61

[45] P. Thörnig, "JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing

Architecture at Jülich Supercomputing Centre," JLSRF, vol. 7, A182, 2021, doi: 10.17815/jlsrf-7-182.

[46] Slurm Workload Manager - Documentation. [Online]. Available: https://slurm.schedmd.com/

(accessed: 01-Mar-24).

[47] ParTec – Modular Supercomputing. [Online]. Available: https://par-tec.com/ (accessed: 01-Mar-24).

[48] JUST. [Online]. Available: https://www.fz-juelich.de/en/ias/jsc/systems/storage-systems/just

(accessed: 01-Mar-24).

[49] JUWELS. [Online]. Available: https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels

(accessed: 01-Mar-24).

[50] JUSUF. [Online]. Available: https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/jusuf

(accessed: 01-Mar-24).

[51] "Score-P User Manuel: Scalable performance measurement infrastructure for parallel codes," 2019.

Accessed: 01-March-2024. [Online]. Available: https://scorepci.pages.jsc.fz-juelich.de/scorep-

pipelines/docs/scorep-6.0/pdf/scorep.pdf

62

A Appendix - source code

In this section of the thesis, a rewritten source code can be found. Only the modified files

including the .cpp and header .h files, as well as files that need to be added such as benchmark cube

script and enumeration methods, are shown. For easier navigation through and methods shown in

chapter 5, all related codes are presented here. The CubeLib library is an open source library,

therefore it can be downloaded for free (see [23]).

A.1 Cube.cpp

/**

** CUBE http://www.scalasca.org/ **

** Copyright (c) 1998-2023 **

** Forschungszentrum Juelich GmbH, Juelich Supercomputing Centre **

** **

** Copyright (c) 2009-2015 **

** German Research School for Simulation Sciences GmbH, **

** Laboratory for Parallel Programming **

** **

** This software may be modified and distributed under the terms of **

** a BSD-style license. See the COPYING file in the package base **

** directory for details. **

**/

namespace cube

{

 MPI_Datatype MPI_TASK;

 void cnode_plain_distribution(int p, Cube& cube)

 {

 const std::vector<Cnode *> cnodes = cube.get_cnodev();

 int Cnodes_total = cnodes.size();

 int cnodesPerProcess = Cnodes_total / p;

 int startIdx;

 int endIdx;

 int i;

 for (int my_rnk = 0; my_rnk < p; my_rnk++)

 {

 startIdx = my_rnk * cnodesPerProcess;

 endIdx = (my_rnk + 1) * cnodesPerProcess;

 if (my_rnk == (p - 1))

 {

 endIdx = Cnodes_total;

 }

 for (i = startIdx; i < endIdx; i++)

 {

 cnodes[i]->set_calculating_rank(my_rnk);

 }

 }

 }

 double metric_agg_exclusive_mpi_task(const Cnode* tmp_c, const CalculationFlavour cnf,

uint32_t tmp_id)

63

 {

 int msg_receive_tag=10003+tmp_c->get_id();

 double res;

 Task* task=new Task();

 task->taskId = tmp_c->get_id();

 task->metric_id = tmp_id;

 task->metric_calc = CUBE_METRIC_EXCLUSIVE;

 task->cnode_id = tmp_c->get_id();

 task->cnode_calc =cnf;

 task->sys_id = -1;

 task->sys_cal= -1;

 MPI_Send(task, 1, MPI_TASK, tmp_c->get_calculating_rank(), tmp_c->get_id(),

MPI_COMM_WORLD);

 MPI_Recv(&res, 1, MPI_DOUBLE, tmp_c->get_calculating_rank(), msg_receive_tag,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 delete task;

 return static_cast<double>(res);

 }

 double metric_agg_inclusive_mpi_task(const Cnode* tmp_c, const CalculationFlavour cnf,

uint32_t tmp_id)

 {

 int msg_receive_tag=10003+tmp_c->get_id();

 double res;

 Task* task=new Task();

 task->taskId = tmp_c->get_id();

 task->metric_id = tmp_id;

 task->metric_calc = CUBE_METRIC_INCLUSIVE;

 task->cnode_id = tmp_c->get_id();

 task->cnode_calc =cnf;

 task->sys_id = -1;

 task->sys_cal= -1;

 MPI_Send(task, 1, MPI_TASK, tmp_c->get_calculating_rank(), tmp_c->get_id(),

MPI_COMM_WORLD);

 MPI_Recv(&res, 1, MPI_DOUBLE, tmp_c->get_calculating_rank(), msg_receive_tag,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 delete task;

 return static_cast<double>(res);

 }

 void process_task(Task* task, int sender_rank, int tag, Cube &cube)

 {

 MPI_Request request=MPI_REQUEST_NULL;

 int message_tag;

 if (tag==10001)

 {

 message_tag=tag*3;

 }

 else

 {

 message_tag = 10003+tag;

 }

 double tmp_val;

64

 const std::vector<Cnode *> &cnodes = cube.get_cnodev();

 const std::vector<Metric *> &metrics = cube.get_metv();

 const std::vector<Sysres *> &syss = cube.get_sysv();

 Metric *metric = metrics[task->metric_id];

 CalculationFlavour metric_calc = static_cast<CalculationFlavour>(task-

>metric_calc);

 Cnode *cnode = cnodes[task->cnode_id];

 CalculationFlavour cnode_calc = static_cast<CalculationFlavour>(task-

>cnode_calc);

 if (task->sys_id == -1)

 {

 tmp_val = cube.get_sev(metric, metric_calc, cnode, cnode_calc);

 }

 else

 {

 Sysres *sys = syss[task->sys_id];

 CalculationFlavour sys_cal = static_cast<CalculationFlavour>(task->sys_cal);

 tmp_val = cube.get_sev(metric, metric_calc, cnode, cnode_calc, sys, sys_cal);

 }

 MPI_Isend(&tmp_val, 1, MPI_DOUBLE, sender_rank, message_tag, MPI_COMM_WORLD,

&request);

 int send_complete = 0;

 while (!send_complete)

 {

 MPI_Test(&request, &send_complete, MPI_STATUS_IGNORE);

 std::this_thread::yield();

 }

 delete task;

 }

 void task_manager(Cube &cube)

 {

 // SCOREP_USER_REGION_DEFINE(my_region_handle)

 // SCOREP_USER_REGION_DEFINE(my_region_handle2)

 // // SCOREP_USER_REGION_DEFINE(my_region_handle3)

 // SCOREP_USER_REGION_DEFINE(my_region_handle4)

 int message_tag;

 int sender_rank;

 int kill_signal;

 std::vector<std::future<void>> futures;

 // std::vector<MPI_Request> recv_requests;

 const std::vector<Cnode *> &cnodes = cube.get_cnodev();

 int blocklen[7] = {1, 1, 1, 1, 1, 1, 1};

 // array of displacements

 MPI_Aint displacements[7] = {

 offsetof(Task, taskId),

 offsetof(Task, metric_id),

 offsetof(Task, metric_calc),

 offsetof(Task, cnode_id),

 offsetof(Task, cnode_calc),

 offsetof(Task, sys_id),

 offsetof(Task, sys_cal)};

 // array of types

65

 MPI_Datatype types[7] = {MPI_UINT64_T, MPI_UINT64_T, MPI_INT32_T, MPI_UINT64_T,

MPI_INT32_T, MPI_INT64_T, MPI_INT32_T};

 MPI_Type_create_struct(7, blocklen, displacements, types, &MPI_TASK);

 MPI_Type_commit(&MPI_TASK);

 std::this_thread::sleep_for(std::chrono::seconds(1));

 while (true)

 {

 MPI_Status status;

 // Check if there is a message

 int flag = 0;

 MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag, &status);

 // MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 if (flag)

 {

 // Receive the message

 sender_rank = status.MPI_SOURCE;

 message_tag = status.MPI_TAG;

 if (message_tag <= 10001 && message_tag>=0)

 {

 // SCOREP_USER_REGION_BEGIN(my_region_handle2,

"Internal_agg_metric_calculation",SCOREP_USER_REGION_TYPE_COMMON)

 Task* task=new Task();

 MPI_Recv(task, 1, MPI_TASK, sender_rank, message_tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

 futures.push_back(std::async(std::launch::async, process_task, task,

sender_rank, message_tag, std::ref(cube)));

 // SCOREP_USER_REGION_END(my_region_handle2)

 }

 else if (message_tag==10002)

 {

 // SCOREP_USER_REGION_BEGIN(my_region_handle4,

"Kill_Signal",SCOREP_USER_REGION_TYPE_COMMON)

 for (std::future<void> &future : futures)

 {

 future.wait(); // Wait for all async tasks to complete

 }

 MPI_Recv(&kill_signal, 1, MPI_INT, sender_rank, message_tag,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 // SCOREP_USER_REGION_END(my_region_handle4)

 break;

 }

 }

 }

 }

}

int& Cube::getCubeIdCounter() {

 static int cubeIdCounter = 0;

 return cubeIdCounter;

}

std::unordered_map<Cube*, int>& Cube::getCubeIds() {

 static std::unordered_map<Cube*, int> cubeIds;

 return cubeIds;

}

66

Cube::Cube(CubeEnforceSaving _enforce_saving,

 int _cube_mpi_rank,

 int _cube_mpi_processes)

 : cur_cnode_id(0),

 cur_metric_id(0),

 cur_region_id(0),

 cur_stn_id(0),

 cur_location_group_id(0),

 cur_location_id(0)

{

 cubepl_memory_manager = new CubePL2MemoryManager();

 //…

 initialized = false;

 set_post_initialization(true);

 enforce_saving = _enforce_saving;

 cube_mpi_rank = _cube_mpi_rank;

 cube_mpi_processes = _cube_mpi_processes;

//…

 cubeId = getCubeIdCounter();

 getCubeIds()[this] = cubeId;

 getCubeIdCounter()++;

}

int Cube::getCubeId() const {

 return cubeId;

}

void Cube::openCubeReport(std::string _cubename,

 bool disable_tasks_tree,

 bool _disable_clustering)

{

 closeCubeReport();

 //…

 initialize();

 if (!disable_tasks_tree)

 {

 process_tasks();

 }

 // DISTRIBUTION of cnodes

 cnode_plain_distribution(cube_mpi_processes, *this);

}

void Cube::initialize()

{

 //…

 // STARTING TASK MANAGER

 a2 = std::async(std::launch::async, task_manager, std::ref(*this));

}

67

A.2 CubeMetricBuildInType.h

template <class T>

class BuildInTypeMetric : public Metric

{

protected:

 SimpleCache<T>* t_cache;

public:

 int metric_mpi_rank;

 BuildInTypeMetric(const std::string& disp_name,

 const std::string& uniq_name,

 const std::string& dtype,

 const std::string& uom,

 const std::string& val,

 const std::string& url,

 const std::string& descr,

 FileFinder* ffinder,

 Metric* parent,

 uint32_t id = 0,

 const std::string& cubepl_expression = "",

 const std::string& cubepl_init_expression = "",

 const std::string& cubepl_aggr_plus_expression = "",

 const std::string& cubepl_aggr_minus_expression = "",

 const std::string& cubepl_aggr_aggr_expression = "",

 bool row_wise = true,

 VizTypeOfMetric is_ghost = CUBE_METRIC_NORMAL

)

 :

 Metric(disp_name,

 uniq_name,

 dtype,

 uom,

 val,

 url,

 descr,

 ffinder,

 parent,

 id,

 cubepl_expression,

 cubepl_init_expression,

 cubepl_aggr_plus_expression,

 cubepl_aggr_minus_expression,

 cubepl_aggr_aggr_expression,

 row_wise,

 is_ghost

)

 {

 t_cache = NULL;

 MPI_Comm_rank(MPI_COMM_WORLD,&metric_mpi_rank);

 }

// Many more functionialites that are out of scope of this thesis

// …

};

68

A.3 CubeInclusiveMetricBuildInType.h

template <class T>

T

InclusiveBuildInTypeMetric<T>::get_sev_aggregated(const Cnode* cnode, const

CalculationFlavour cnf)

{

 // SCOREP_USER_REGION_DEFINE(my_region_handle7)

 if (!(this->active))

 {

 return 0.;

 }

 if (this->adv_sev_mat == NULL && get_type_of_metric() == CUBE_METRIC_INCLUSIVE)

 {

 return 0.;

 }

 T v = static_cast<T>(0);

 if (this->isCacheable() && ((this->t_cache)->testAndGetTCachedValue(v, cnode, cnf

)))

 {

 return v;

 }

 size_t sysv_size = this->sysv.size();

 for (size_t i = 0; i < sysv_size; i++)

 {

 const Location* _loc = this->sysv[i];

 T tmp = this->get_sev_elementary(cnode, _loc);

 (v) = this->aggr_operator(v, tmp);

 }

 // SCOREP_USER_REGION_BEGIN(my_region_handle7,

"Inclusive_sev_aggregated",SCOREP_USER_REGION_TYPE_COMMON)

 if (cnf == CUBE_CALCULATE_EXCLUSIVE && (cnode->num_children() > 0))

 {

 T _cv = static_cast<T>(0);

 // Split the the children vector of given cnode depending on the rank distribution

 std::vector<cube::Cnode*> local_cnodes;

 std::vector<cube::Cnode*> remote_cnodes;

 for (cnode_id_t cid = 0; cid < cnode->num_children(); cid++)

 {

 cube::Cnode* tmp_c = cnode->get_child(cid);

 if (!tmp_c->isHidden())

 {

 if (tmp_c->get_calculating_rank() == this->metric_mpi_rank)

 {

 local_cnodes.push_back(tmp_c);

 }

 else

 {

 remote_cnodes.push_back(tmp_c);

 }

 }

 }

69

 // Calculate remote contributions asynchronously

 std::vector<std::future<double>> remote_results;

 uint32_t tmp_id=this->get_id();

 for (cube::Cnode* tmp_c : remote_cnodes)

 {

 if (!tmp_c->isHidden())

 {

 std::future<double> a4 = std::async(std::launch::async,

metric_agg_inclusive_mpi_task, tmp_c,cnf, tmp_id);

 remote_results.push_back(std::move(a4));

 }

 }

 // Calculate local contributions

 T _cv_local = static_cast<T>(0);

 for (cube::Cnode* tmp_c : local_cnodes)

 {

 if (!tmp_c->isHidden())

 {

 T tmp_t = this->get_sev_aggregated(tmp_c,

cube::CUBE_CALCULATE_INCLUSIVE);

 _cv_local = this->plus_operator(_cv_local, tmp_t);

 }

 }

 // Wait for remote result

 T _cv_remote = static_cast<T>(0);

 for (std::future<double>& a4 : remote_results)

 {

 T remote_result = a4.get();

 _cv_remote = this->plus_operator(_cv_remote, remote_result);

 }

 // v = this->minus_operator(v, this->plus_operator(_cv_remote, _cv_local));

 _cv=this->plus_operator(_cv_remote, _cv_local);

 v = this->minus_operator(v, _cv);

 }

 if (this->isCacheable())

 {

 this->t_cache->setTCachedValue(v, cnode, cnf);

 }

 // SCOREP_USER_REGION_END(my_region_handle7)

 return static_cast<double>(v);

}

70

A.4 CubeExclusiveMetricBuildInType.h

template <class T>

T

ExclusiveBuildInTypeMetric<T>::get_sev_aggregated(const Cnode* cnode, const

CalculationFlavour cnf)

{

 // SCOREP_USER_REGION_DEFINE(my_region_handle5)

 if (!(this->active))

 {

 return 0.;

 }

 if (this->adv_sev_mat == NULL && get_type_of_metric() == CUBE_METRIC_EXCLUSIVE)

 {

 return 0.;

 }

 T v = static_cast<T>(0);

 if (this->isCacheable() && ((this->t_cache)->testAndGetTCachedValue(v, cnode,

cnf)))

 {

 return v;

 }

 size_t sysv_size = this->sysv.size();

 for (size_t i = 0; i < sysv_size; i++)

 {

 Location* _loc = this->sysv[i];

 T tmp = this->get_sev_elementary(cnode, _loc);

 v = this->aggr_operator(v, tmp);

 }

 // SCOREP_USER_REGION_BEGIN(my_region_handle5,

"Exclusive_sev_aggregated",SCOREP_USER_REGION_TYPE_COMMON)

 // Split the the children vector of given cnode depending on the rank distribution

 T _cv = static_cast<T>(0);

 std::vector<cube::Cnode*> local_cnodes;

 std::vector<cube::Cnode*> remote_cnodes;

 for (cnode_id_t cid = 0; cid < cnode->num_children() ; cid++)

 {

 cube::Cnode* tmp_c = cnode->get_child(cid);

 if (cnf == cube::CUBE_CALCULATE_INCLUSIVE || tmp_c->isHidden())

 {

 if (tmp_c->get_calculating_rank() == this->metric_mpi_rank)

 {

 local_cnodes.push_back(tmp_c);

 }

 else

 {

 remote_cnodes.push_back(tmp_c);

 }

 }

 }

 // Calculate remote contributions asynchronously

 std::vector<std::future<double>> remote_results;

 uint32_t tmp_id=this->get_id();

71

 for (cube::Cnode* tmp_c : remote_cnodes)

 {

 std::future<double> a3 = std::async(std::launch::async,

metric_agg_exclusive_mpi_task, tmp_c, cnf, tmp_id);

 remote_results.push_back(std::move(a3));

 }

 // Calculate local contributions

 T _cv_local = static_cast<T>(0);

 for (cube::Cnode* tmp_c : local_cnodes)

 {

 T tmp_t = this->get_sev_aggregated(tmp_c, cube::CUBE_CALCULATE_INCLUSIVE);

 _cv_local = this->plus_operator(_cv_local, tmp_t);

 // v = this->plus_operator(v, tmp_t);

 }

 // Wait for remote result

 T _cv_remote = static_cast<T>(0);

 for (std::future<double>& a3 : remote_results)

 {

 T remote_result = a3.get();

 _cv_remote = this->plus_operator(_cv_remote, remote_result);

 }

 _cv = this->plus_operator(_cv_remote, _cv_local);

 v = this->plus_operator(v, _cv);

 // v = this->plus_operator(v, this->plus_operator(_cv_remote, _cv_local));

 if (this->isCacheable())

 {

 (this->t_cache)->setTCachedValue(v, cnode, cnf);

 }

 // SCOREP_USER_REGION_END(my_region_handle5)

 return v;

}

72

A.5 regioninfo_calls.h

/**

 * Accumulate usr, mpi, com and total values in md.

 */

template<class T>

void

acc_with_type(metric_data<T>& md, CRegionInfo& reginfo, CBlacklist* blacklist)

{

 /*

 accumulate usr, mpi, com and total values in md

 */

 typename std::map<Region*, double>::const_iterator it;

 for (it = md.excl.begin(); it != md.excl.end(); ++it)

 {

 T nv((T)it->second);

 const Region* region(it->first);

 md.total += nv;

 switch (reginfo[region->get_id()])

 {

 case cube::MPI:

 md.mpi += nv;

 break;

 case COM:

 md.com += nv;

 break;

 case USR:

 md.usr += nv;

 break;

 default: // another regions are not observed at all and will be ignored

 break;

 }

 if (blacklist != 0)

 {

 if ((*blacklist)(region->get_id()))

 {

 md.bl += nv;

 }

 else

 {

 switch (reginfo[region->get_id()])

 {

 case cube::MPI:

 md.mpi_bl += nv;

 break;

 case COM:

 md.com_bl += nv;

 break;

 case USR:

 md.usr_bl += nv;

73

 break;

 default: // another regions are not observed at all and will be ignored

 break;

 }

 }

 }

 }

}

/**

 * Calculate a cost (given as a severity value mulpilied wih a factor) for

 every region for every thread. Calculate a cost for every kind of regions

 (usr, mpi, omp, and so on) over all threads. And get a maximum value at the end.

 */

//…

 const unsigned long long newval = static_cast<unsigned long long>(input-

>get_sev(visits, cnode, thread));

 const unsigned long long costs = newval * d;

 buffer[ThreadId] += costs;

 tbcosts.pt_all[ThreadId] += costs;

 tbcosts.acc_costs_by_region[i] += costs;

 if (blacklist != 0)

 {

 if ((*blacklist)((Region*)region))

 {

 tbcosts.pt_bl[ThreadId] += costs;

 }

 else

 {

 switch (reginfo[i])

 {

 case cube::MPI:

 tbcosts.pt_mpi_bl[ThreadId] += costs;

 break;

 case USR:

 tbcosts.pt_usr_bl[ThreadId] += costs;

 break;

 case COM:

 tbcosts.pt_com_bl[ThreadId] += costs;

 break;

 default: // another regions are not observed at all and will

be ignored

 break;

 }

 tbcosts.pt_wbl[ThreadId] += costs;

 }

 }

 switch (reginfo[i])

 {

 case cube::MPI:

 tbcosts.pt_mpi[ThreadId] += costs;

 break;

74

 case USR:

 tbcosts.pt_usr[ThreadId] += costs;

 break;

 case COM:

 tbcosts.pt_com[ThreadId] += costs;

 break;

 default: // another regions are not observed at all and will be ignored

 break;

 }

 }

 }

 unsigned long long max_costs = find_max(buffer).first;

 if (tbcosts.max_costs_by_region[i] < max_costs)

 {

 tbcosts.max_costs_by_region[i] = max_costs;

 }

 }

 /*

 BEGIN: calculate total costs split by category (mpi, com, usr, blacklist) using

get_met_tree(...)

 */

 for (size_t regionId = 0; regionId < regions.size(); regionId++)

 {

 Region* region = regions[regionId];

 const vector<Cnode*>& cnodev(region->get_cnodev());

 unsigned long long d = TypeFactor(region->get_name());

 for (size_t cnodeId = 0; cnodeId < cnodev.size(); cnodeId++)

 {

 map<Metric*, double> excl_metrics;

 map<Metric*, double> incl_metrics;

 Cnode* cnode = cnodev[cnodeId];

 input->get_met_tree(excl_metrics, incl_metrics, EXCL, INCL, cnode, 0);

 Metric* metric = input->get_met("visits");

 unsigned long long visits((unsigned long long)excl_metrics[metric]);

 unsigned long long nc = d * visits;

 tbcosts.acc_all += nc;

 if (blacklist != 0)

 {

 if ((*blacklist)((Region*)region))

 {

 tbcosts.acc_bl += nc;

 }

 else

 {

 switch (reginfo[regionId])

 {

 case cube::MPI:

 tbcosts.acc_mpi_bl += nc;

 break;

75

 case USR:

 tbcosts.acc_usr_bl += nc;

 break;

 case COM:

 tbcosts.acc_com_bl += nc;

 break;

 default: // another regions are not observed at all and will be

ignored

 break;

 }

 }

 }

 switch (reginfo[regionId])

 {

 case cube::MPI:

 tbcosts.acc_mpi += nc;

 break;

 case USR:

 tbcosts.acc_usr += nc;

 break;

 case COM:

 tbcosts.acc_com += nc;

 break;

 default: // another regions are not observed at all and will be ignored

 break;

 }

 }

 }

 /*…

 */

 return tbcosts;

}

76

A.6 Enumeration_Methods.cpp

void

cnode_plain_distribution(int p, Cube& cube)

{

 const std::vector<Cnode *> cnodes = cube.get_cnodev();

 int Cnodes_total = cnodes.size();

 int cnodesPerProcess = Cnodes_total / p;

 int startIdx;

 int endIdx;

 int i;

 for (int my_rnk = 0; my_rnk < p; my_rnk++)

 {

 startIdx = my_rnk * cnodesPerProcess;

 endIdx = (my_rnk + 1) * cnodesPerProcess;

 if (my_rnk == (p - 1))

 {

 endIdx = Cnodes_total;

 }

 for (i = startIdx; i < endIdx; i++)

 {

 cnodes[i]->set_calculating_rank(my_rnk);

 }

 }

}

void

round_robin_distribution(int p, Cube& cube)

{

 const std::vector<Cnode *> cnodes = cube.get_cnodev();

 int my_rnk=0;

 for (int i = 0; i <cnodes.size() ; i++)

 {

 if (my_rnk>=p)

 {

 my_rnk=0;

 }

 cnodes[i]->set_calculating_rank(my_rnk);

 my_rnk++;

 }

}

void cnode_random_distribution(int p, Cube& cube) {

 const std::vector<Cnode *> cnodes = cube.get_cnodev();

 int Cnodes_total = cnodes.size();

 int my_rnk=0;

 std::vector<int> shuffled_ranks(Cnodes_total - 1);

 for (int i = 0; i < Cnodes_total - 1; i++) {

 if (my_rnk>=p)

 {

 my_rnk=0;

 }

 shuffled_ranks[i] = my_rnk;

 my_rnk++;

 }

77

 std::shuffle(shuffled_ranks.begin(), shuffled_ranks.end(),

std::default_random_engine());

 cnodes[0]->set_calculating_rank(0);

 for (int i = 1; i < Cnodes_total; i++) {

 cnodes[i]->set_calculating_rank(shuffled_ranks[i - 1]);

 }

}

void assignValue(int totalNodes, int p, int leverage, int& nodeDivision, std::vector<int>&

childAllocated)

{

 if ((totalNodes%p)==0){

 nodeDivision = (totalNodes / p);

 }

 else{

 nodeDivision = (totalNodes / p) + 1;

 }

 for (int i = 0; i < p; i++)

 {

 childAllocated[i]=0;

 }

}

int caculateTotallength(cube::Cnode *node)

 {

 if (node == nullptr)

 {

 return 0;

 }

 int totalLength = 0;

 for (cnode_id_t cid = 0; cid < node->num_children(); cid++)

 {

 Cnode* tmp_c = node->get_child(cid);

 totalLength += caculateTotallength(tmp_c);

 }

 return totalLength + 1;

 }

void assignSameRank(Cnode *cnode, int rank,std::vector<int>& childAllocated)

{

 if (cnode == nullptr)

 {

 return;

 }

 cnode->set_calculating_rank(rank);

 childAllocated[rank] += 1;

 for (cnode_id_t cid = 0; cid < cnode->num_children(); cid++)

 {

 Cnode* tmp_c = cnode->get_child(cid);

 assignSameRank(tmp_c, rank, childAllocated);

 }

}

78

void assignRootRank(Cnode* cnode, int p, int laverage, int& nodeDivision,

std::vector<int>& childAllocated)

{

 std::vector<int> rankCount;

 std::vector<int> rankCountIndex;

 for(int i=0; i<p; i++){

 rankCount.push_back(0);

 rankCountIndex.push_back(i);

 }

 // count the rank of children

 for (cnode_id_t cid = 0; cid < cnode->num_children(); cid++)

 {

 Cnode* tmp_c = cnode->get_child(cid);

 rankCount[tmp_c->get_calculating_rank()] += 1;

 }

 // sort the rankCount

 for(int i=0; i<rankCount.size(); i++){

 for(int j=i+1; j<rankCount.size(); j++){

 if(rankCount[i] < rankCount[j]){

 int temp = rankCount[i];

 rankCount[i] = rankCount[j];

 rankCount[j] = temp;

 temp = rankCountIndex[i];

 rankCountIndex[i] = rankCountIndex[j];

 rankCountIndex[j] = temp;

 }

 }

 }

 int notAssign= -1;

 // assign the rank to the node

 for(int i=0; i<rankCount.size(); i++){

 if(childAllocated[rankCountIndex[i]] < (nodeDivision+laverage)){

 cnode->set_calculating_rank(rankCountIndex[i]);

 childAllocated[rankCountIndex[i]] +=1;

 notAssign= 0;

 break;

 }

 }

}

void distributeRank(Cnode *cnode, int nodeDivision, std::vector<int>& childAllocated, int

p, int laverage)

{

 if (cnode == nullptr)

 {

 return;

 }

 // Calculate the length of the current node

 int length = caculateTotallength(cnode);

 if (length <= nodeDivision)

 {

79

 int rank=-1;

 for(int i=0; i<childAllocated.size(); i++){

 int childAppendable = nodeDivision - childAllocated[i];

 if(childAppendable >= length){

 rank = i;

 break;

 }

 }

 if(rank != -1){

 // assigning longest chain to single process

 assignSameRank(cnode, rank, childAllocated);

 }else{

 // drop the call down to all children

 for (cnode_id_t cid = 0; cid < cnode->num_children(); cid++)

 {

 Cnode* tmp_c = cnode->get_child(cid);

 distributeRank(tmp_c,nodeDivision,childAllocated, p, laverage);

 }

 // call the assign root base on majority rule out

 assignRootRank(cnode,p,laverage, nodeDivision, childAllocated);

 }

 }

 else

 {

 // drop the call down to all children

 for (cnode_id_t cid = 0; cid < cnode->num_children(); cid++)

 {

 Cnode* tmp_c = cnode->get_child(cid);

 distributeRank(tmp_c ,nodeDivision,childAllocated,p, laverage);

 }

 // call the assign root base on majority rule out

 assignRootRank(cnode,p,laverage, nodeDivision, childAllocated);

 }

}

void deepest_bfs(int p, Cube& cube)

{

 int nodeDivision;

 int laverage = 0;

 std::vector<int> childAllocated(p);

 const std::vector<Cnode *> cnodes = cube.get_cnodev();

 Cnode *root;

 for (Cnode* cnode : cnodes)

 {

 if (cnode->get_parent() == nullptr)

 {

 root = cnode;

 break;

 }

 }

 assignValue(cnodes.size(), p, laverage, nodeDivision, childAllocated);

 distributeRank(root, nodeDivision, childAllocated, p, laverage);

}

80

A.7 mpi_prototype.cpp

/**

** CUBE http://www.scalasca.org/ **

** Copyright (c) 1998-2023 **

** Forschungszentrum Juelich GmbH, Juelich Supercomputing Centre **

** **

** Copyright (c) 2009-2015 **

** German Research School for Simulation Sciences GmbH, **

** Laboratory for Parallel Programming **

** **

** This software may be modified and distributed under the terms of **

** a BSD-style license. See the COPYING file in the package base **

** directory for details. **

**/

#include "Cube.h"

#include "CubeMetric.h"

#include "CubeCnode.h"

#include "CubeThread.h"

#include <mpi.h>

// #include <scorep/SCOREP_User.h>

namespace pmpi

{

 void task_send_mock(Cube& cube)

 {

 MPI_Status status;

 std::vector<Metric*> metrics = cube.get_metv();

 std::vector<Cnode*> cnodes = cube.get_cnodev();

 std::vector<Task> task(cnodes.size());

 // std::vector<MPI_Request> request(cnodes.size(),MPI_REQUEST_NULL);

 MPI_Request request=MPI_REQUEST_NULL;

 // for (int i = 0; i < cnodes.size(); i++)

 // {

 int i=0;

 int processId = cnodes[i]->get_calculating_rank();

 task[i].taskId = i;

 task[i].metric_id= metrics[0]->get_id();

 task[i].metric_calc= 0;

 task[i].cnode_id= cnodes[i]->get_id();

 task[i].cnode_calc = 0;

 task[i].sys_id = -1;

 task[i].sys_cal=-1;

 // send the task to the process

 MPI_Isend(&task[i], 1, MPI_TASK, processId, 10001, MPI_COMM_WORLD, &request);

 //}

 // MPI_Waitall(request.size(),request.data(), MPI_STATUSES_IGNORE);

 }

 void Received_Results(int p)

 {

 // MPI_Request request;

81

 MPI_Status recv_status;

 int resultCount = 0;

 int flag;

 int kill_signal = -1;

 int total_count=1;

 std::vector<double> result(total_count);

 std::vector<MPI_Request> request2(total_count+p,MPI_REQUEST_NULL);

 // receiving the results

 while(resultCount < total_count)

 {

 flag = 0;

 MPI_Iprobe(MPI_ANY_SOURCE, 30003, MPI_COMM_WORLD, &flag, &recv_status);

 // MPI_Probe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &recv_status);

 if (flag)

 {

 int sender_rank = recv_status.MPI_SOURCE;

 int message_tag = recv_status.MPI_TAG;

 // MPI_Recv(&result, 1, MPI_DOUBLE, sender_rank, message_tag,

MPI_COMM_WORLD, &recv_status);

 MPI_Irecv(&result[resultCount], 1, MPI_DOUBLE, sender_rank, message_tag,

MPI_COMM_WORLD, &request2[resultCount]);

 std::cout<< "Result is: "<< result[resultCount] <<" received from process

"<< sender_rank<<std::endl;

 resultCount++;

 }

 }

 // sending a kill signal Here

 for(int i = 0; i < p; i++)

 {

 // MPI_Send(&kill_signal, 1, MPI_INT, i, 6, MPI_COMM_WORLD);

 MPI_Isend(&kill_signal, 1, MPI_INT, i, 10002, MPI_COMM_WORLD,

&request2[total_count+i]);

 }

 MPI_Waitall(request2.size(),request2.data(), MPI_STATUS_IGNORE);

 }

}

int main(int argc, char **argv)

{

 // SCOREP_USER_REGION_DEFINE(my_region_handle10)

 int my_rank, p, provided;

 std::future<void> a1;

 std::future<void> a5;

 // intialize with thread support

 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 // SCOREP_USER_REGION_BEGIN(my_region_handle10,

"Cube_opened",SCOREP_USER_REGION_TYPE_COMMON)

 Cube cube(CUBE_ENFORCE_ZERO,my_rank,p);

 cube.openCubeReport("children-example.cubex");

 // SCOREP_USER_REGION_END(my_region_handle10)

 if (my_rank==0)

 {

 a1 = std::async(std::launch::async, pmpi::task_send_mock, std::ref(cube));

82

 // int totalCount=cube.get_cnodev().size();

 a5 = std::async(std::launch::deferred,pmpi::Received_Results,p);

 a1.wait();

 a5.wait();

 }

 // cube.closeCubeReport();

 cube.a2.wait();

 MPI_Type_free(&MPI_TASK);

 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();

 return 0;

}

83

A.8 cube_bt.cpp

// Function to generate random severity values for balanced tree

double generateRandomSeverity(const Cnode *tmp_cnode, int i)

{

 return static_cast<double>(0.0001 * i * tmp_cnode->get_id());

}

int main(int argc, char* argv[])

{

 int total_cn=65;

 int total_stn=1;

 int total_lg=1;

 int total_loc=100;

 int childCount = 2; // Number of children for each cnode

 string cube_name="tree-example-65Cn3";

 Metric* met0, * met1;

 try

 {

 Cube cube;

 // Build metric tree

 met0 = cube.def_met("Time", "time", "DOUBLE", "sec", "", "", "root node", NULL,

CUBE_METRIC_EXCLUSIVE); // without using mirror

 met1 = cube.def_met("User time", "usertime", "DOUBLE", "sec", "", "", "root node",

NULL, CUBE_METRIC_INCLUSIVE); // without using mirror

 // Build call tree

 string mod = "/ICL/CUBE/example.c";

 // Define the root cnode

 Region* rootRegion = cube.def_region("Cnode 0 (Root)", "cnode_0", "mpi",

"barrier", 1, 1, "", "1st level", mod);

 Cnode* rootCnode = cube.def_cnode(rootRegion, mod, 1, NULL);

 // Build child cnodes recursively

 vector<Cnode*> cnodes;

 cnodes.push_back(rootCnode);

 int level = 1;

 int cnodesCount = 1;

 while (cnodesCount < total_cn) {

 int currentLevelCnodesCount = pow(childCount, level);

 int remainingCnodesCount = total_cn - cnodesCount;

 int levelCnodesCount = min(currentLevelCnodesCount, remainingCnodesCount);

 for (int i = 0; i < levelCnodesCount; i++) {

 int currentIndex = cnodesCount + i;

 string cnodeName = "Cnode " + to_string(currentIndex);

 Region* region = cube.def_region(cnodeName, "cnode_" +

to_string(currentIndex), "mpi", "barrier", currentIndex + 1, currentIndex + 1, "",

to_string(level) + " level", mod);

84

 // Calculate the parent index correctly to create a tree structure

 int parentIndex = (currentIndex - 1) / childCount;

 Cnode* parentCnode = cnodes[parentIndex];

 Cnode* cnode = cube.def_cnode(region, mod, currentIndex + 1, parentCnode);

 cnodes.push_back(cnode);

 }

 level++;

 cnodesCount += levelCnodesCount;

 }

 // Build location trees

 vector<LocationGroup*> locationGroups(total_lg); // Vector to store location

groups

 vector<SystemTreeNode*> systemTreeNodes(total_stn); // Vector to store system tree

nodes

 vector<vector<vector<vector<Location*>>>> locations(total_stn,

vector<vector<vector<Location*>>>(1, vector<vector<Location*>>(total_lg,

vector<Location*>(total_loc))));

 for (int i = 0; i < total_stn; i++) {

 systemTreeNodes[i] = cube.def_system_tree_node("Machine " + to_string(i), "",

"", nullptr);

 cube::LocationGroupType groupType = cube::CUBE_LOCATION_GROUP_TYPE_PROCESS;

 for (int k=0; k<total_lg; k++)

 {

 locationGroups[k] = cube.def_location_group("Location Group " +

to_string(k), k, groupType, systemTreeNodes[i]);

 for (int j = 0; j < total_loc; j++) {

 Location* location = cube.def_location("Thread " + to_string(i) + "_"

+ to_string(j), i * 10 + k, cube::CUBE_LOCATION_TYPE_CPU_THREAD, locationGroups[k]);

 locations[i][0][k][j] = location;

 }

 }

 }

 cube.initialize();

 // Set random severity values for metrics, cnodes, and threads

 for (Cnode* cnode : cnodes) {

 for (int i = 0; i < total_stn; i++) {

 for (int j = 0; j < 1; j++) {

 for (int k = 0; k < total_lg; k++) {

 for (int l = 0; l < total_loc; l++) {

 Location* location = locations[i][j][k][l];

 cube.set_sev(met0, cnode, location,

generateRandomSeverity(cnode, l));

 cube.set_sev(met1, cnode, location,

generateRandomSeverity(cnode, l));

 }

 }

 }

 }

 }

 // Output file

85

 cube.writeCubeReport(cube_name);

 }

 catch (const RuntimeError& error)

 {

 cout << error.what() << endl;

 }

 return 0;

}

